Максимум Online сегодня: 643 человек.
Максимум Online за все время: 4395 человек.
(рекорд посещаемости был 29 12 2022, 01:22:53)


Всего на сайте: 24816 статей в более чем 1761 темах,
а также 358418 участников.


Добро пожаловать, Гость. Пожалуйста, войдите или зарегистрируйтесь.
Вам не пришло письмо с кодом активации?

 

Сегодня: 25 04 2024, 10:49:31

Сайт adonay-forum.com - готовится посетителями и последователями Центра духовных практик "Адонаи.

Страниц: 1 ... 16 17 18 19 20 | Вниз

Ответ #85: 26 05 2010, 12:52:24 ( ссылка на этот ответ )

Николай Егорович Жуковский родился 5 (17) января 1847 года. Он был сыном инженера, одного из строителей Нижегородской железной дороги. Мальчик рос в старом, но совсем небогатом дворянском доме. Тут всё делалось ещё на французский лад, важнее всего считалось, чтобы у детей были хорошие манеры, хороший тон.
   Сначала мальчика отдали в Четвёртую московскую гимназию. Математику в этой гимназии преподавали авторы самых распространённых в России учебников — Малинин и Буренин. В первых классах Жуковский оказался самым плохим математиком из-за своей рассеянности. Жуковский не любил цифр и расчётов в их голом, отвлечённом виде и у Малинина учился плохо. Но у Буренина, преподававшего геометрию, он вдруг оказался лучшим учеником. Очевидно, по самому складу своего ума ребёнок мог отчётливее всего видеть мир и понимать отношения в нём геометрически, когда понимание было предельно ясным, зримым.
   Окончив курс гимназии с золотой медалью, Жуковский поступил на математический факультет Московского университета. В университете читали лекции известные учёные: Давидов, Слудский, Цингер. Уже с первого года пребывания в университете Жуковский участвовал вместе со своими учителями в занятиях математического кружка, из которого потом выросло Московское математическое общество.
   Студент Жуковский жил в комнатке, названной товарищами «шкафчиком», и, когда причёсывался, гребёнкой задевал потолок. Он бегал по городу, давая уроки разным ученикам, издавал литографским способом лекции, им самим аккуратно записанные и имевшие в его редакции большой успех.

   В 1868 году университетский курс был закончен. Жуковского тянуло к практической деятельности. Он мечтал тогда стать инженером, как его друг Щукин, известный впоследствии строитель паровозов. Друзья вместе поступили в Петербургский институт путей сообщения, но тут профессора занимались не разъяснением руководящих научных идей, а простым изложением фактического материала, потребного для повседневной практики, учили студентов считать и чертить. А Жуковский как раз к этому не имел ни особенных способностей, ни охоты. В результате через год он провалился на экзамене по геодезии и решил, что инженера из него не выйдет. Тогда он оставил институт и вернулся в Москву.
   Из-за болезненного состояния он должен был провести целый год у отца в Орехове, а с осени 1870 года стал учителем физики в одной из московских женских гимназий. Вскоре ему поручили преподавание математики в Московском высшем техническом училище, которого он не покидал уже до конца жизни.
   Оторванному от университета молодому учёному нелегко далась магистерская диссертация «Кинематика жидкого тела», но защитил он её блестяще; эта работа стала первым его вкладом в гидродинамику.
   До него никто не занимался кинематикой, то есть наглядно-геометрической стороной движения частиц жидкости. Что происходит в движущейся жидкости, знали только в общих чертах. Но представить себе, может быть даже вычертить конкретный путь движения какой-нибудь частицы, на которую действует бесчисленное множество сил, — эта задача казалась невозможной. Жуковский нашёл формулу, которая позволила рассчитать поведение каждой частицы в движущемся потоке жидкости.
   Совет училища командировал юного магистра за границу. Он слушал знаменитых Гельмгольца, Кирхгофа в Берлине, работал у Дарбу и Реваля в Сорбонне, сблизился в Париже с виднейшими русскими учёными того времени: Андреевым, Яблочковым, Ливенцевым. В это время Жуковский и начал заниматься исследованием движения воздушных потоков. Позже он создал новую науку, которая была названа аэродинамикой.
   Жуковский вернулся в Москву с твёрдо установившимися взглядами и на науку, и на самого себя. Советом высшего технического училища он был избран профессором по кафедре механики. Сочинение «О прочности движения» принесло ему учёную степень доктора прикладной механики. В 1888 году Жуковский занял кафедру прикладной механики в университете. Он становится деятельнейшим членом всех научных обществ в Москве, где он уже устроился на жительство с матерью, братьями и сёстрами.

   За письменным столом в московской своей квартире Жуковский с геометрической выразительностью и математической точностью формулировал законы, управляющие движением воды и воздуха. С помощью чертежей, формул и чисел он вводил людей, умеющих читать их, в огромную лабораторию живой природы.
   Однажды Николай Егорович занимался вопросом о вращении веретена на кольцевых ватерах. После теоретического решения он предложил, как всегда, и практическую конструкцию веретена. Друзья предупреждали его, что по русским законам изобретатель лишается права на патент, если заявке на изобретение будет предшествовать публичный доклад о нём. Жуковский не отменил доклада.
   Сто лет теоретики и экспериментаторы стремились к созданию оптимальной формы гребного корабельного винта. Уже была изобретена паровая турбина и строились быстроходные суда. Найти лучшую форму такого винта становилось теперь неотложнейшей задачей. Машиностроительный гений англичанин Парсонс, изобретатель паровой турбины, бился над практическим решением. Европейские учёные теоретизировали. Жуковский, взявшись за то же дело, создал свою знаменитую «Вихревую теорию гребного винта» и положил конец спорам.
   Ученики и товарищи, знавшие всю остроту положения, настаивали на немедленном печатании работы. Жуковский на спешку не соглашался.
   — Вы потеряете научное первенство, Николай Егорович! — убеждали его.
   — Неважно, — отвечал Жуковский спокойно.

   Для него было важно наиболее глубоким и правильным образом решить задачу — всё остальное, вроде погони за «первенством», мешало, отвлекая внимание и ум.
   В 1903 году американцы братья Райт впервые подняли в воздух аэроплан. Но настоящим творцом и научной и практической авиации стал именно Жуковский. Среди других работ проблеме авиации великий учёный уделял немало внимания. К концу же долгой жизни его авиация была уже главным делом Жуковского.
   Ещё в 1892 году русский учёный в скромной статье «О парении птиц» объяснял, каким образом могут птицы парить в воздухе с распростёртыми крыльями, и теоретически доказал, что можно построить аппараты для искусственного парения, что они будут устойчивы и даже смогут совершать мёртвые петли и фигуры высшего пилотажа. В 1897 году появляется статья Жуковского «О наивыгоднейшем угле наклона аэропланов».
   В 1902 году Жуковский построил в Московском университете аэродинамическую трубу. В неё он помещал модели, мощный вентилятор гнал им навстречу воздух.
   В 1904 году на базе его лаборатории был создан первый в мире институт аэродинамических исследований. Он расположился в подмосковном посёлке Кучино. Именно там Жуковский сделал своё главное открытие — нашёл источник подъёмной силы крыла и дал формулу для расчёта этой силы. Так стал возможен математический расчёт любого летательного аппарата. До сих пор во всём мире курс аэродинамики начинают читать с изложения теории подъёмной силы, разработанной Жуковским. Основываясь на своих открытиях, учёный также разработал теорию крыла самолёта, методы расчёта воздушных винтов и динамики полёта.
   В 1910 году Жуковский создал аэродинамическую лабораторию при Московском высшем техническом училище. В ней Жуковский занимался исследованием воздушных винтов. В этой лаборатории и начинали работу студенты Жуковского, в будущем ставшие известными учёными, — И. Сикорский, А. Туполев, С. Чаплыгин. В институте была разработана методика математического расчёта летательного аппарата.

   Во время войны 1914–1918 годов кружок Жуковского при МВТУ превратился по инициативе своего руководителя в расчётно-испытательное бюро для проверки аэродинамических свойств самолётов, к строительству которых едва-едва начала приступать Россия.
   Ещё до войны при том же техническом училище Жуковский организовал курсы авиации. Отсюда вышли первые русские лётчики. Здесь Жуковский начал первым в мире читать свой курс лекций о теоретических основах воздухоплавания. В 1918 году курсы были преобразованы в Московский институт инженеров воздушного флота, ставший затем Академией воздушного флота имени Жуковского.
   Для авиационных конструкторов неожиданно приобрели значение также многие из тех работ великого учёного, которые сам он не связывал с авиацией. Таковы его работы по гидродинамике. Жуковский исследовал законы, управляющие поведением тел в жидкой среде, чтобы заставить эти законы служить человеку, творцу техники. Но при огромных скоростях нынешних самолётов и воздух ведёт себя как жидкость. Так формулы гидродинамических исследований Жуковского тоже участвуют в процессе создания новых самолётов.
   Жуковский был не только теоретиком, но и практиком. Однажды к нему обратились из дирекции московского водопровода с просьбой усовершенствовать водопроводный кран. Дело заключалось в том, что если резко закрывать краны, то лопались водопроводные трубы. Жуковский установил, что это происходит в результате ударной волны, возникавшей в трубе при резком закрытии крана. По его совету конструкция кранов была изменена, и разрывы труб прекратились. Теперь эта конструкция применяется во всём мире.
   После Октябрьской революции Николай Егорович сумел сделать немногие оставшиеся ему годы жизни годами плодотворного, напряжённого творчества.
   Семидесятилетний старик в годы нищеты и разрухи, ранним утром, пешком, по занесённым снегом улицам шёл в училище, потом через весь город в университет — часто только для того, чтобы прочесть лекцию трём-четырём студентам. Неустройства быта проходили мимо него. Жуковский не замечал их, как раньше не замечал комфорта, которым его окружала семья.

   В 1918 году был создан Центральный институт аэро- и гидродинамики (ЦАГИ). Первоначальная работа по организации института протекала в отведённой для этого столовой квартиры Николая Егоровича.
   ЦАГИ стал крупным центром научных исследований в области самолётостроения. Именно там был разработан самолёт АНТ-25, на котором Валерий Чкалов совершил беспосадочный перелёт в Америку.
   По идее и при непосредственном участии Жуковского было создано крупнейшее авиационное учебное заведение — Московский авиационный институт (МАИ), а также Военно-воздушная академия, которая теперь носит его имя.
   Этот потомок русских богатырей заболел весной 1920 года воспалением лёгких, затем паралич, последовавший за известием о смерти дочери, затем брюшной тиф в декабре и новый апоплексический удар весной следующего года.
   17 марта 1921 года Жуковский умер.

 

 

Ответ #86: 26 05 2010, 16:24:23 ( ссылка на этот ответ )

Имя этого человека вызывало одновременно восхищение и ненависть у его современников. Тем не менее он вошёл в историю мировой науки не только как последователь Джордано Бруно, но и как один из крупнейших учёных итальянского Возрождения.
   Он родился 15 февраля 1564 года в городе Пизе в знатной, но обедневшей семье. Его отец Винченцо Галилей был талантливым музыкантом и композитором, но искусство не давало средств к существованию, и отец будущего учёного прирабатывал торговлей сукном.
   До одиннадцати лет Галилей жил в Пизе и учился в обычной школе, а затем вместе с семьёй переехал во Флоренцию. Здесь он продолжил образование в монастыре бенедиктинцев, где изучал грамматику, арифметику, риторику и другие предметы.
   В семнадцать лет Галилей поступил в Пизанский университет и стал готовиться к профессии врача. Одновременно из любознательности он читал труды по математике и механике, в частности, Евклида и Архимеда. Последнего позже Галилей всегда называл своим учителем.
   Из-за стеснённого материального положения юноше пришлось бросить Пизанский университет и вернуться во Флоренцию. Дома Галилей самостоятельно занялся углублённым изучением математики и физики, которые его очень заинтересовали. В 1586 году он написал свою первую научную работу «Маленькие гидростатические весы», которая принесла ему некоторую известность и позволила познакомиться с несколькими учёными. По протекции одного из них — автора «Учебника механики» Гвидо Убальдо дель Монте Галилей в 1589 году получил кафедру математики в Пизанском университете. В двадцать пять лет он стал профессором там, где учился, но не завершил своё образование.

   Галилей преподавал студентам математику и астрономию, которую излагал, естественно, по Птолемею. Именно к этому времени относятся опыты, которые он ставил, бросая различные тела с наклонной Пизанской башни, чтобы проверить, падают ли они в соответствии с учением Аристотеля — тяжёлые быстрее, чем лёгкие. Ответ получился отрицательный.
   В работе «О движении» (1590) Галилей подверг критике аристотелевское учение о падении тел. В ней, между прочим, он писал: «Если разум и опыт в чём-нибудь совпадают, для меня не играет роли то, что это противоречит мнению большинства».
   К этому же периоду относится установление Галилеем изохронности малых колебаний маятника — независимости периода его колебаний от амплитуды. К такому выводу он пришёл, наблюдая за качанием люстр в Пизанском соборе и отмечая время по биению пульса на руке… Гвидо дель Монте высоко ценил Галилея как механика и называл его «Архимедом нового времени».
   Критика Галилеем физических представлений Аристотеля восстановила против него многочисленных сторонников древнегреческого учёного. Молодому профессору стало очень неуютно в Пизе, и он принял приглашение занять кафедру математики в известном Падуанском университете.
   Падуанский период — самый плодотворный и счастливый в жизни Галилея. Здесь он обрёл семью, связав свою судьбу с Мариной Гамба, которая родила ему двух дочерей: Вирджинию (1600) и Ливию (1601); позже родился сын Винченцо (1606).
   С 1606 года Галилей занимается астрономией. В марте 1610 года увидел свет его труд под названием «Звёздный вестник». Вряд ли когда-либо в одном произведении сообщалось столько сенсационных астрономических сведений, сделанных к тому же буквально в течение нескольких ночных наблюдений в январе — феврале того же 1610 года.

   Узнав об изобретении телескопа и располагая неплохой собственной мастерской, Галилей изготовляет несколько образцов зрительных труб, постоянно улучшая их качество. В результате учёному удалось сделать телескоп с увеличением в 32 раза. В ночь на 7 января 1610 года он направляет телескоп на небо. То, что он увидел там — лунный пейзаж, горные цепи и вершины, бросавшие тени, долины и моря, — уже приводило к мысли о том, что Луна похожа на Землю, — факт, свидетельствовавший не в пользу религиозных догм и учения Аристотеля об особом положении Земли среди небесных тел.
   Огромная белая полоса на небе — Млечный Путь — при рассмотрении в зрительную трубу отчётливо разделилась на отдельные звёзды. Возле Юпитера учёный заметил маленькие звёздочки (сначала три, затем ещё одну), которые уже на следующую ночь изменили своё положение относительно планеты. Галилею с его кинематическим восприятием явлений природы не нужно было долго раздумывать — перед ним спутники Юпитера! — ещё один довод против исключительного положения Земли. Галилей открыл существование четырёх спутников Юпитера. Позже Галилей обнаружил феномен Сатурна (хотя и не понял, в чём дело) и открыл фазы Венеры.
   Наблюдая, как солнечные пятна перемещаются по солнечной поверхности, он установил, что Солнце тоже вращается вокруг своей оси. На основании наблюдений Галилей сделал вывод, что вращение вокруг оси свойственно всем небесным телам.
   Наблюдая звёздное небо, он убедился, что число звёзд гораздо больше, чем можно увидеть простым глазом. Так Галилей подтвердил мысль Джордано Бруно о том, что просторы Вселенной бесконечны и неисчерпаемы. После этого Галилей сделал вывод о том, что гелиоцентрическая система мира, предложенная Коперником, является единственно верной.
   Телескопические открытия Галилея были многими встречены с недоверием, даже с враждебностью, но сторонники коперниканского учения, и прежде всего Кеплер, тут же опубликовавший «Разговор со звёздным вестником», отнеслись к ним с восторгом, видя в этом подтверждение правоты своих убеждений.
   «Звёздный вестник» принёс учёному европейскую славу. Тосканский герцог Козимо II Медичи предложил Галилею занять должность придворного математика. Она сулила безбедное существование, свободное время для занятий наукой, и учёный принял предложение. Кроме того, это позволяло Галилею вернуться на родину, во Флоренцию.

   Теперь, имея могущественного покровителя в лице великого герцога Тосканского, Галилей всё смелее и смелее начинает пропагандировать учение Коперника. Клерикальные круги встревожены. Авторитет Галилея как учёного высок, к его мнению прислушиваются. Значит, решат многие, учение о движении Земли — не просто одна из гипотез устройства мира, которая упрощает астрономические расчёты.
   Беспокойство служителей церкви по поводу триумфального распространения учения Коперника хорошо поясняет письмо кардинала Роберто Беллармино одному из своих корреспондентов: «Когда утверждают, что в предположении, будто Земля движется и Солнце стоит неподвижно, все наблюдаемые явления объясняются лучше, чем при… геоцентрической системе Птолемея, то это прекрасно сказано и не заключает в себе никакой опасности; а этого и достаточно для математики; но когда начинают говорить, что Солнце в действительности стоит в центре мира, и что оно только вращается вокруг себя, но не движется с востока на запад, и что Земля находится на третьем небе и с большой скоростью вращается вокруг Солнца, то это вещь очень опасная и не только потому, что она раздражает всех философов и учёных богословов, но и потому, что она вредит св. вере, поскольку из неё вытекает ложность Св. Писания».
   В Рим посыпались доносы на Галилея. В 1616 году по просьбе Конгрегации святого индекса (церковного учреждения, ведающего вопросами разрешений и запрещений) одиннадцать видных богословов рассмотрели учение Коперника и пришли к выводу о его ложности. На основе этого заключения гелиоцентрическое учение было объявлено еретическим, а книга Коперника «Об обращении небесных сфер» внесена в индекс запрещённых книг. Одновременно запрещались все книги, поддерживавшие эту теорию, — существовавшие и те, которые будут написаны в будущем.
   Галилея вызвали из Флоренции в Рим и в мягкой, но категорической форме потребовали прекратить пропаганду еретических представлений об устройстве мира. Увещевание проводил всё тот же кардинал Беллармино. Галилей был вынужден подчиниться. Он не забыл, чем кончилось для Джордано Бруно упорство в «ереси». Кроме того, как философ он знал, что «ересь» сегодня становится истиной завтра.
   В 1623 году под именем Урбана VIII папой становится друг Галилея кардинал Маффео Барберини. Учёный спешит в Рим. Он надеется добиться отмены запрещения «гипотезы» Коперника, но тщетно. Папа объясняет Галилею, что сейчас, когда католический мир раздирается ересью, недопустимо ставить под сомнение истинность святой веры.
   Галилей возвращается во Флоренцию и продолжает работать над новой книгой, не теряя надежды когда-нибудь опубликовать свой труд. В 1628 году он ещё раз посещает Рим, чтобы разведать обстановку и выяснить отношение высших иерархов церкви к учению Коперника. В Риме он встречает ту же нетерпимость, но она не останавливает его. Галилей заканчивает книгу и в 1630 году представляет её в Конгрегацию.

   Рассмотрение сочинения Галилея в цензуре тянулось два года, затем последовал запрет. Тогда Галилей решил издать свой труд в родной Флоренции. Ему удалось искусно обмануть тамошних цензоров, и в 1632 году книга увидела свет.
   Она называлась «Диалог о двух главнейших системах мира — птолемеевой и коперниковой» и была написана как драматическое произведение. По цензурным соображениям Галилей вынужден проявлять осторожность: книга написана в форме диалога между двумя сторонниками Коперника и одним приверженцем Аристотеля и Птолемея, причём каждый из собеседников старается понять точку зрения другого, допустив её справедливость. В предисловии Галилей вынужден заявить, что, поскольку учение Коперника противно святой вере и запрещено, он вовсе не является его сторонником и в книге теория Коперника только обсуждается, а не утверждается. Но ни предисловие, ни форма изложения не могли скрыть истины: догмы аристотелевской физики и птолемеевской астрономии терпят здесь такой очевидный крах, а теория Коперника настолько убедительно торжествует, что вопреки сказанному в предисловии личное отношение Галилея к учению Коперника и его убеждённость в справедливости этого учения не вызывают сомнений.
   Правда, из изложения вытекает, что Галилей всё ещё верил в равномерное и круговое движение планет вокруг Солнца, т. е. не сумел оценить и не принял кеплеровых законов движения планет. Он также не согласился с предположениями Кеплера относительно причин возникновения приливов и отливов (притяжение Луны!), развив взамен собственную теорию этого явления, оказавшуюся неверной.
   Церковные власти пришли в ярость. Санкции последовали незамедлительно. Продажу «Диалога» запретили, а Галилея вызвали в Рим на суд. Напрасно семидесятилетний старец представил свидетельство трёх врачей о том, что он болен. Из Рима сообщили, что если он не приедет добровольно, то его привезут силой, в кандалах. И престарелый учёный отправился в путь.
   «Я прибыл в Рим, — пишет Галилей в одном из писем, — 10 февраля 1633 года и положился на милость инквизиции и святого отца… Сначала меня заперли в замке Троицы на горе, а на следующий день меня посетил комиссар инквизиции и увёз меня в своей карете.
   По дороге он задавал мне разные вопросы и выразил пожелание, чтобы я прекратил скандал, вызванный в Италии моим открытием, касающимся движения Земли… На все математические доказательства, которые я мог ему противопоставить, он отвечал мне словами из священного писания: „Земля была и будет неподвижна во веки веков“».

   Следствие тянулось с апреля по июнь 1633 года, а 22 июня в той же церкви, почти на том же самом месте, где Джордано Бруно выслушал смертный приговор, Галилей, стоя на коленях, произнёс предложенный ему текст отречения. Под угрозой пыток Галилей, опровергая обвинение в том, что он нарушил запрет о пропаганде учения Коперника, вынужден был признать, что «неосознанно» способствовал подтверждению правоты этого учения, и публично от него отречься. Поступая так, униженный Галилей понимал, что затеянный инквизицией процесс не остановит триумфального шествия нового учения, ему же самому нужны были время и возможность для дальнейшего развития заложенных в «Диалоге» идей, чтобы они стали началом классической системы мира, в которой не осталось бы места церковным догмам. Церкви же этот процесс нанёс непоправимый ущерб.
   Галилей не сдался, хотя в последние годы жизни ему пришлось работать в тяжелейших условиях. На своей вилле в Арчетри он находился под домашним арестом (под постоянным надзором инквизиции). Вот что он пишет, например, своему другу в Париж: «В Арчетри я живу под строжайшим запретом не выезжать в город и не принимать ни много друзей одновременно, ни с теми, кого я принимаю, не общаться иначе как крайне сдержанно… И мнится мне, что… теперешняя моя тюрьма заменена будет лишь на ту долгую и тесную, которая всех нас ожидает».
   Два года Галилей в заточении пишет «Беседы и математические доказательства…», где, в частности, излагает основы динамики. Когда книга закончена, весь католический мир (Италия, Франция, Германия, Австрия) отказывается её печатать.
   В мае 1636 года учёный ведёт переговоры об издании своего труда в Голландии, а затем тайно переправляет туда рукопись. «Беседы» выходят в свет в Лейдене в июле 1638 года, а в Арчетри книга попадает почти через год — в июне 1639 года. К тому времени ослепший Галилей (сказались годы упорной работы, возраст и то, что учёный часто смотрел на Солнце без хороших светофильтров) мог лишь ощупать своё детище руками.
   Галилей умер 8 января 1642 года.
   Только в ноябре 1979 года папа римский Иоанн-Павел II официально признал, что инквизиция в 1633 году совершила ошибку, силой вынудив отречься учёного от теории Коперника.

   Это был первый и единственный в истории католической церкви случай публичного признания несправедливости осуждения еретика, совершённый спустя 337 лет после его смерти.

 

 

Ответ #87: 26 05 2010, 22:54:39 ( ссылка на этот ответ )

Исаак Ньютон родился в день Рождественского праздника 1642 года (по новому стилю — 4 января 1643 года) в деревушке Вульсторп в Линкольншире. Отец его умер ещё до рождения сына. Мать Ньютона, урождённая Айскоф, вскоре после смерти мужа преждевременно родила, и новорождённый Исаак был поразительно мал и хил. Думали, что младенец не выживет. Ньютон, однако, дожил до глубокой старости и всегда, за исключением кратковременных расстройств и одной серьёзной болезни, отличался хорошим здоровьем.
   По имущественному положению семья Ньютонов принадлежала к числу фермеров средней руки. Первые три года жизни маленький Исаак провёл исключительно на попечении матери. Но, выйдя вторично замуж за священника Смита, мать поручила ребёнка бабушке, своей матери. Когда Исаак подрос, его устроили в начальную школу. По достижении двенадцатилетнего возраста мальчик начал посещать общественную школу в Грантэме. Его поместили на квартиру к аптекарю Кларку, где он прожил с перерывами около шести лет. Жизнь у аптекаря впервые возбудила в нём охоту к занятиям химией, что касается школьной науки, она не давалась Ньютону. По всей вероятности, главная вина в этом случае должна быть отнесена на счёт неспособности учителей. С детства будущий учёный любил сооружать разные механические приспособления — и навсегда остался, прежде всего, механиком.
   Живя у Кларка, Исаак сумел подготовиться к университетским занятиям. 5 июня 1660 года, когда Ньютону ещё не исполнилось восемнадцати лет, он был принят в колледж святой Троицы (Тринити-колледж). Кембриджский университет был в то время одним из лучших в Европе: здесь одинаково процветали науки филологические и математические. Ньютон обратил главное внимание на математику. О первых трёх годах пребывания Ньютона в Кембридже известно немногое. Судя по книгам университета, в 1661 году он был «субсайзером». Так назывались бедные студенты, не имевшие средств платить за учение и ещё недостаточно подготовленные к слушанию настоящего университетского курса. Они посещали некоторые лекции и вместе с тем должны были прислуживать более богатым. Только в 1664 году Ньютон стал настоящим студентом; в 1665 году он получил степень бакалавра изящных искусств (словесных наук).
   Его первые научные опыты связаны с исследованиями света. В результате многолетней работы Ньютон установил, что белый солнечный луч представляет собой смесь многих цветов. Учёный доказал, что при помощи призмы белый цвет можно разложить на составляющие его цвета. Изучая преломление света в тонких плёнках, Ньютон наблюдал дифракционную картину, получившую название «колец Ньютона». В полной мере значимость данного открытия была осознана лишь во второй половине XIX века, когда на его основе возник спектральный анализ — новый метод, позволявший изучать химический состав даже удалённых от Земли звёзд.

   В 1666 году в Кембридже началась какая-то эпидемия, которую по тогдашнему обычаю сочли чумой, и Ньютон удалился в свой Вульсторп. Здесь, в деревенской тиши, не имея под рукой ни книг, ни приборов, живя почти отшельнической жизнью, двадцатичетырёхлетний Ньютон предался глубоким философским размышлениям. Плодом их было гениальнейшее из его открытий — учение о всемирном тяготении.
   Был летний день. Ньютон любил размышлять, сидя в саду, на открытом воздухе. Предание сообщает, что размышления Ньютона были прерваны падением налившегося яблока. Знаменитая яблоня долго хранилась в назидание потомству, позднее засохла, была срублена и превращена в исторический памятник в виде скамьи.
   Ньютон давно размышлял о законах падения тел, и весьма возможно, что падение яблока опять навело его на размышления. Сам Ньютон писал много лет спустя, что математическую формулу, выражающую закон всемирного тяготения, он вывел из изучения знаменитых законов Кеплера.
   Ньютон никогда не мог бы развить и доказать своей гениальной идеи если бы не обладал могущественным математическим методом, которого не знал ни Гук, ни кто-либо иной из предшественников Ньютона — это анализ бесконечно малых величин, известный теперь под именем дифференциального и интегрального исчислений. Задолго до Ньютона многие философы и математики занимались вопросом о бесконечно малых, но ограничились лишь самыми элементарными выводами.
   В 1669 году Ньютон уже был профессором математики Кембриджского университета, унаследовав кафедру, которой руководил знаменитый математик того времени Исаак Барроу. Именно там Ньютон совершил своё первое крупное открытие. Почти одновременно с немецким математиком Лейбницем он создал важнейшие разделы математики — дифференциальное и интегральное исчисления. Но открытия Ньютона касались не только математики.
   Ньютон создал свой метод, опираясь на прежние открытия, сделанные им в области анализа, но в самом главном вопросе он обратился к помощи геометрии и механики.

   Когда именно Ньютон открыл свой новый метод, в точности неизвестно. По тесной связи этого способа с теорией тяготения следует думать, что он был выработан Ньютоном между 1666 и 1669 годами и, во всяком случае, раньше первых открытий, сделанных в этой области Лейбницем.
   Возвратившись в Кембридж, Ньютон занялся научной и преподавательской деятельностью. С 1669 по 1671 год он читал лекции, в которых излагал свои главные открытия относительно анализа световых лучей; но ни одна из его научных работ ещё не была опубликована. Ньютон всё ещё продолжал работать над усовершенствованием оптических зеркал. Отражательный телескоп Грегори с отверстием в середине, объективного зеркала не удовлетворял Ньютона. «Невыгоды этого телескопа, — говорит он, — показались мне весьма значительными, и я счёл необходимым изменить конструкцию, поставив окуляр сбоку трубы».
   Тем не менее в области техники телескопного дела оставалось ещё много работы. Ньютон сначала пытался шлифовать увеличительные стёкла, но после открытий, сделанных им относительно разложения световых лучей, он оставил мысль об усовершенствовании преломляющих телескопов и взялся за шлифовку вогнутых зеркал.
   Сделанный Ньютоном телескоп может с полным правом считаться первым отражательным телескопом. Затем учёный сделал вручную ещё один телескоп больших размеров и лучшего качества.
   Об этих телескопах узнало, наконец, Лондонское королевское общество, которое обратилось к Ньютону через посредство своего секретаря Ольденбурга с просьбою сообщить подробности изобретения. В 1670 году Ньютон передал свой телескоп Ольденбургу — событие весьма важное в его жизни, так как этот инструмент впервые сделал имя Ньютона известным всему тогдашнему учёному миру. В конце 1670 года Ньютон был избран в члены Лондонского королевского общества.

   В 1678 году умер секретарь Лондонского королевского общества Ольденбург, относившийся к Ньютону чрезвычайно дружески и с величайшим уважением. Место его занял Гук, хотя и завидовавший Ньютону, но невольно признававший его гений.
   Надо заметить, что Гук сыграл свою роль в выдающихся открытиях Ньютона. Ньютон полагал, что падающее тело вследствие соединения его движения с движением Земли опишет винтообразную линию. Гук показал, что винтообразная линия получается лишь в том случае, если принять во внимание сопротивление воздуха и что в пустоте движение должно быть эллиптическим — речь идёт об истинном движении, то есть таком, которое мы могли бы наблюдать, если бы сами не участвовали в движении земного шара.
   Проверив выводы Гука, Ньютон убедился, что тело, брошенное с достаточной скоростью, находясь в то же время под влиянием силы земного тяготения, действительно может описать эллиптический путь. Размышляя над этим предметом, Ньютон открыл знаменитую теорему, по которой тело, находящееся под влиянием притягивающей силы, подобной силе земного тяготения, всегда описывает какое-либо коническое сечение, то есть одну из кривых, получаемых при пересечении конуса плоскостью (эллипс, гипербола, парабола и в частных случаях круг и прямая линия). Сверх того, Ньютон нашёл, что центр притяжения, то есть точка, в которой сосредоточено действие всех притягивающих сил, действующих на движущуюся точку, находится в фокусе описываемой кривой. Так, центр Солнца находится (приблизительно) в общем фокусе эллипсов, описываемых планетами.
   Достигнув таких результатов, Ньютон сразу увидел, что он вывел теоретически, то есть исходя из начал рациональной механики, один из законов Кеплера, гласящий, что центры планет описывают эллипсы и что в фокусе их орбит находится центр Солнца. Но Ньютон не удовольствовался этим основным совпадением теории с наблюдением. Он хотел убедиться, возможно ли при помощи теории действительно вычислить элементы планетных орбит, то есть предсказать все подробности планетных движений?
   Желая убедиться, действительно ли сила земного тяготения, заставляющая тела падать на Землю, тождественна силе, удерживающей Луну в её орбите, Ньютон стал вычислять, но, не имея под рукой книг, воспользовался лишь самыми грубыми данными. Вычисление показало, что при таких числовых данных сила земной тяжести больше силы, удерживающей Луну в её орбите, на одну шестую и как будто существует некоторая причина, противодействующая движению Луны.
   Как только Ньютон узнал об измерении меридиана, произведённом французским учёным Пикаром, он тотчас произвёл новые вычисления и к величайшей радости своей убедился, что его давнишние взгляды совершенно подтвердились. Сила, заставляющая тела падать на Землю, оказалась совершенно равной той, которая управляет движением Луны.

   Этот вывод был для Ньютона высочайшим торжеством. Теперь вполне оправдались его слова: «Гений есть терпение мысли, сосредоточенной в известном направлении». Все его глубокие гипотезы, многолетние вычисления оказались верными. Теперь он вполне и окончательно убедился в возможности создать целую систему мироздания, основанную на одном простом и великом начале. Все сложнейшие движения Луны, планет и даже скитающихся по небу комет стали для него вполне ясными. Явилась возможность научного предсказания движений всех тел Солнечной системы, а быть может, и самого Солнца, и даже звёзд и звёздных систем.
   В конце 1683 года Ньютон, наконец, сообщил Королевскому обществу основные начала своей системы, изложив их в виде ряда теорем о движении планет. Свои основные выводы Ньютон представил в фундаментальном труде под названием «Математические начала натуральной философии». До конца апреля 1686 года первые две части его книги были готовы и посланы в Лондон.
   В области механики Ньютон не только развил положения Галилея и других учёных, но и дал новые принципы, не говоря уже о множестве замечательных отдельных теорем.
   По словам самого Ньютона, ещё Галилей установил начала, названные Ньютоном «двумя первыми законами движения» Ньютон формулирует эти законы так:
   I. Всякое тело пребывает в состоянии покоя или равномерного прямолинейного движения, пока на него не подействует какая-либо сила и не заставит его изменить это состояние.
   II. Изменение движения пропорционально движущей силе и направлено по прямой, по которой действует данная сила.

   Сверх этих двух законов Ньютон сформулировал ещё третий закон движения, выразив его так:
   III. Действие всегда равно и прямо противоположно противодействию, то есть действия двух тел друг на друга всегда равны и направлены в противоположные стороны.
   Установив общие законы движения Ньютон вывел из них множество следствий и теорем, позволивших ему довести теоретическую механику до высокой степени совершенства. С помощью этих теоретических начал он подробно выводит свой закон тяготения из законов Кеплера и затем решает обратную задачу, то есть показывает, каково должно быть движение планет, если признать закон тяготения за доказанный.
   Открытие Ньютона привело к созданию новой картины мира, согласно которой все планеты, находящиеся друг от друга на колоссальных расстояниях, оказываются связанными в одну систему. Этим законом Ньютон заложил начало новой отрасли астрономии — небесной механики, которая сегодня изучает движение планет и позволяет рассчитывать их положение в пространстве.
   Ньютон смог рассчитать орбиты, по которым движутся спутники Юпитера и Сатурна, а пользуясь этими данными, определить, с какой силой Земля притягивает Луну. В свою очередь все эти данные будут использованы при будущих околоземных космических полётах.
   Дальнейшие исследования Ньютона позволили ему определить массу и плотность планет и самого Солнца. Ньютон показал, что плотность Солнца вчетверо менее плотности Земли, а средняя плотность Земли приблизительно равна плотности гранита и вообще самых тяжёлых каменных пород. Относительно планет Ньютон установил, что наиболее близкие к Солнцу планеты отличаются наибольшею плотностью.

   Далее Ньютон приступил к вычислению фигуры земного шара. Он показал, что Земля имеет сфероидальную форму, а именно представляет как бы шар, расширенный у экватора и сплюснутый у полюсов.
   Учёный доказал зависимость приливов и отливов от совместного действия Луны и Солнца на воды морей и океанов.
   Что касается собственно так называемой «небесной механики», Ньютон не только продвинул, но, можно сказать, создал эту науку, так как до него существовал лишь ряд эмпирических данных. Весьма любопытна данная Ньютоном теория движения комет, которую он считал недостаточно разработанной и напечатал лишь по настоянию Галлея. Благодаря расчётам Ньютона, Галлей смог предсказать появление огромной кометы, которая действительно появилась на небосводе в 1759 году. Она была названа кометой Галлея.
   В 1842 году известный немецкий астроном Бессель на основе закона Ньютона предсказал существование невидимого спутника у звезды Сириус. Открытие этого спутника через 10 лет явилось доказательством того, что закон всемирного тяготения не только действует в Солнечной системе, но и является одним из общих законов вселенной.
   В 1688 году Ньютон был избран в парламент, хотя и незначительным большинством голосов, и заседал в так называемом Конвенте впредь до его роспуска.
   В 1689 году Ньютона постигло семейное горе — умерла от тифа его мать. Извещённый о её болезни, он испросил в парламенте отпуск и поспешил к ней. Целые ночи проводил великий учёный у постели матери, сам давал ей лекарства и приготовлял горчичники и мушки, ухаживая за больной, как самая лучшая сиделка. Но болезнь оказалась роковою. Смерть матери глубоко огорчила Ньютона и, быть может, немало способствовала сильной нервной раздражительности, проявившейся у него несколько позднее болезни.

   Но и после своей болезни Ньютон продолжал научную работу, хотя и не с прежней интенсивностью. Он окончательно разработал теорию движения Луны и подготовил повторные издания своего бессмертного труда, в которых сделал много новых, весьма важных дополнений. После болезни он создал свою теорию астрономической рефракции, то есть преломления лучей светил в слоях земной атмосферы. Наконец, после болезни Ньютон решил несколько весьма трудных задач, предложенных другими математиками.
   Ньютону было уже за пятьдесят лет. Несмотря на свою огромную славу и блестящий успех его книги (издание принадлежало не ему, а Королевскому обществу), Ньютон жил в весьма стеснённых обстоятельствах, а иногда просто нуждался: случалось, что он не мог уплатить пустячного членского взноса. Жалованье его было незначительно, и Ньютон тратил всё, что имел, частью на химические опыты, частью на помощь своим родственникам; он помогал даже своей старинной любви — бывшей мисс Сторей.
   В 1695 году материальные обстоятельства Ньютона изменились. Близкий друг и поклонник Ньютона Чарлз Монтегю, молодой аристократ, лет на двадцать моложе Ньютона, был назначен канцлером казначейства. Заняв этот пост, Монтегю занялся вопросом об улучшении денежного обращения в Англии, где в то время, после ряда войн и революций, было множество фальшивой и неполновесной монеты, что приносило огромный ущерб торговле. Монтегю вздумал перечеканить всю монету.
   Чтобы придать наибольший вес своим доказательствам, Монтегю обратился к тогдашним знаменитостям, в том числе и к Ньютону. И учёный не обманул ожиданий своего друга. Он взялся за новое дело с чрезвычайным усердием и вполне добросовестно, причём своими познаниями в химии и математической сообразительностью оказал огромные услуги стране. Благодаря этому трудное и запутанное дело перечеканки было удачно выполнено в течение двух лет, что сразу восстановило торговый кредит.
   Вскоре после того Ньютон из управляющего монетным двором был сделан главным директором монетного дела и стал получать 1500 фунтов в год; эту должность он занимал до самой смерти. При чрезвычайно умеренном образе жизни Ньютона из жалованья у него образовался целый капитал.
   В 1701 году Ньютон был избран членом парламента, а в 1703 году стал президентом английского Королевского общества. В 1705 году английский король возвёл Ньютона в рыцарское достоинство.

   Ньютона отличали скромность и застенчивость. Он долго не решался опубликовать свои открытия, и даже собирался уничтожить некоторые из глав своих бессмертных «Начал». «Я только потому стою высоко, — сказал Ньютон, — что стал на плечи гигантов».
   Доктор Пембертон, познакомившийся с Ньютоном, когда последний был уже стар, не мог надивиться скромности этого гения. По его словам, Ньютон был чрезвычайно приветлив, не имел ни малейшей напускной эксцентричности и был чужд выходкам, свойственным иным «гениям». Он отлично приспосабливался ко всякому обществу и нигде не обнаруживал ни малейшего признака чванства. Зато и в других Ньютон не любил высокомерно-авторитетного тона и особенно не терпел насмешек над чужими убеждениями.
   Ньютон никогда не вёл счёта деньгам. Щедрость его была безгранична. Он говаривал: «Люди, не помогавшие никому при жизни, никогда никому не помогли». В последние годы жизни Ньютон стал богат и раздавал деньги, но и раньше, когда даже сам нуждался в необходимом, он всегда поддерживал близких и дальних родственников. Впоследствии Ньютон пожертвовал крупную сумму приходу, в котором родился, и часто давал стипендии молодым людям. Так, в 1724 году он назначил стипендию в двести рублей Маклорену, впоследствии знаменитому математику, отправив его за свой счёт в Эдинбург в помощники к Джемсу Грегори.
   С 1725 года Ньютон перестал ходить на службу. Умер Исаак Ньютон в ночь на 20 (31) марта 1726 года во время эпидемии чумы. В день его похорон был объявлен национальный траур. Его прах покоится в Вестминстерском аббатстве, рядом с другими выдающимися людьми Англии.

 

 

Ответ #88: 27 05 2010, 20:40:52 ( ссылка на этот ответ )

В 1909 году в Париже было большое торжество открывали памятник великому французскому натуралисту Жану-Батисту Ламарку в ознаменование столетия со дня выхода в свет его знаменитого сочинения «Философия зоологии».

   На одном из барельефов этого памятника изображена трогательная сцена: в кресле в грустной позе сидит слепой старик — это сам Ламарк, потерявший в старости зрение, а рядом стоит молодая девушка — его дочь, которая утешает отца и обращается к нему со словами: «Потомство будет восхищаться вами, мой отец, оно отомстит за вас».
   Жан-Батист Пьер Антуан де Моне шевалье де Ламарк родился 1 августа 1744 года во Франции, в небольшом местечке. Он был одиннадцатым ребёнком в обедневшей аристократической семье. Родители хотели сделать его священником и определили в иезуитскую школу, но после смерти отца шестнадцатилетний Ламарк оставил школу и вступил в 1761 году добровольцем в действующую армию. Там он проявил большую храбрость и получил звание офицера. После окончания войны Ламарк приехал в Париж, повреждение шеи заставило его оставить военную службу. Он стал учиться медицине. Но он больше интересовался естественными науками, в особенности ботаникой. Получая незначительную пенсию, он для заработка поступил в один из банкирских домов.
   После ряда лет усиленных занятий трудолюбивый и талантливый молодой учёный написал большое сочинение в трёх томах — «Флора Франции», изданное в 1778 году. Там описано множество растений и дано руководство к их определению. Эта книга сделала имя Ламарка известным, и в следующем году его избрали членом Парижской академии наук. В академии он с успехом продолжал заниматься ботаникой и приобрёл большой авторитет в этой науке. В 1781 году его назначили главным ботаником французского короля.
   Другим увлечением Ламарка была метеорология. С 1799 по 1810 год он издал одиннадцать томов, посвящённых этой науке. Занимался он физикой и химией.
   В 1793 году, когда Ламарку уже было под пятьдесят, его научная деятельность в корне изменилась. Королевский ботанический сад, где работал Ламарк, был преобразован в Музей естественной истории. Свободных кафедр ботаники в музее не оказалось, и ему предложили заняться зоологией. Трудно было пожилому человеку оставить прежнюю работу и перейти на новую, но огромное трудолюбие и гениальные способности Ламарка всё преодолели. Лет через десять он сделался таким же знатоком в области зоологии, каким был в ботанике.
   Прошло немало времени, Ламарк состарился, перешагнул рубеж в шестьдесят лет. Он знал теперь о животных и растениях почти всё, что было известно науке того времени. Ламарк решил написать такую книгу, в которой не описывались бы отдельные организмы, а были бы разъяснены законы развития живой природы. Ламарк задумал показать, как появились животные и растения, как они изменялись и развивались и как достигли современного состояния. Говоря языком науки, он захотел показать, что животные и растения не созданы такими, каковы они есть, а развивались в силу естественных законов природы, т. е. показать эволюцию органического мира.

   Это была нелёгкая задача. Лишь немногие учёные до Ламарка высказывали догадки об изменяемости видов, но только Ламарку с его колоссальным запасом знаний удалось разрешить эту задачу. Поэтому Ламарк заслуженно считается творцом первой эволюционной теории, предшественником Дарвина.
   Свою книгу Ламарк напечатал в 1809 году и назвал её «Философия зоологии», хотя там речь идёт не только о животных, но и обо всей живой природе. Не следует думать, что все интересовавшиеся в то время наукой обрадовались этой книге и поняли, что Ламарк поставил перед учёными великую задачу. В история науки часто бывало, что великие идеи оставались непонятыми современниками и получали признание лишь много лет спустя.
   Так случилось и с идеями Ламарка. Одни учёные не обратили на его книгу никакого внимания, другие посмеялись над ней. Наполеон, которому Ламарк вздумал преподнести свою книгу, так выбранил его, что тот не мог удержаться от слёз.
   Под конец жизни Ламарк ослеп и, всеми забытый, умер 18 декабря 1829 года восьмидесяти пяти лет от роду. С ним оставалась лишь дочь его Корнелия. Она заботилась о нём до самой смерти и писала под его диктовку.
   Слова Корнелии, запечатлённые на памятнике Ламарку, оказались пророческими: потомство действительно оценило труды Ламарка и признало его великим учёным. Но это случилось не скоро, через много лет после смерти Ламарка, после того, как появилось в 1859 году замечательное сочинение Дарвина «Происхождение видов». Дарвин подтвердил правильность эволюционной теории, доказал её на многих фактах и заставил вспомнить о своём забытом предшественнике.
   Сущность теории Ламарка заключается в том, что животные и растения не всегда были такими, какими мы их видим теперь. В давно прошедшие времена они были устроены иначе и гораздо проще, чем теперь. Жизнь на Земле возникла естественным путём в виде очень простых организмов. С течением времени они постепенно изменялись, совершенствовались, пока не дошли до современного, знакомого нам состояния. Таким образом, все живые существа происходят от непохожих на них предков, более просто и примитивно устроенных.

   Отчего же органический мир, или, иначе говоря, все животные и растения, не стоял неподвижно, как часы без завода, а двигался вперёд, развивался, изменялся, как изменяется и теперь? Ламарк дал ответ и на этот вопрос.
   Развитие растений и животных зависит от двух главных причин. Первая причина, по мнению Ламарка, заключается в том, что весь органический мир сам по себе стремится непрерывно изменяться и улучшаться, — это его неотъемлемое внутреннее свойство, которое Ламарк назвал стремлением к прогрессу.
   Вторая причина, от которой зависит, согласно учению Ламарка, эволюция органического мира, — это воздействие на организмы той обстановки, в которой они живут. Эта обстановка, или жизненная среда, слагается из воздействия на животных и на растения пищи, света, тепла, влаги, воздуха, почвы и т. д. Среда эта весьма разнообразна и изменчива, поэтому она воздействует на организмы различным образом. В общих словах, среда влияет на органический мир как непосредственно, так и косвенно.
   Ламарк считал, что растения и самые низшие животные изменяются под воздействием окружающей среды прямо и непосредственно, приобретая ту или иную форму, те или иные свойства. Например, растение, выросшее на хорошей почве, получает совсем иной облик, нежели растение того же вида, выросшее на плохой почве. Растение, выращенное в тени, не похоже на растение, выращенное на свету, и т. д. Животные же изменяются по-другому. Под влиянием изменения среды у них образуются различные новые привычки и навыки. И привычка, вследствие постоянного повторения и упражнения различных органов, развивает эти органы. Например, у животного, которое постоянно живёт в лесу и вынуждено лазать по деревьям, разовьются хватательные конечности, а у животного, которое вынуждено постоянно передвигаться на большие расстояния, разовьются сильные ноги с копытами и т. д. Это будет уже не прямое, а косвенное влияние среды — посредством привычек. Кроме того, Ламарк считал, что признаки, которые приобретают организмы под влиянием среды, могут передаваться по наследству.
   Таким образом, две причины (с одной стороны — врождённое стремление к совершенствованию, с другой стороны — влияние среды) создают, согласно учению Ламарка, всё многообразие органического мира.
   С точки зрения современной биологии, в теории Ламарка многое устарело. Например, современная наука отрицает, что в органическом мире существует какое-то таинственное и необъяснимое стремление к совершенствованию. Дарвин иначе объяснил относительно целесообразное строение тела животных и растений и то, как они приспособляются к среде. Главной причиной эволюции он считал естественный отбор. Влияние же условий окружающей среды на организмы, которое занимает большое место в учении Ламарка, признаётся и современной биологией.

   Дарвин под конец своей жизни признал, что он не обратил достаточного внимания на изменение организмов под влиянием окружающей их среды. Современная биология придаёт влиянию среды большое значение.
   Однако главная заслуга Ламарка не в объяснении причин эволюции, а в том, что он первый, за полвека до Дарвина, предложил теорию о естественном возникновении и развитии органического мира.
   Идеи Ламарка о влиянии среды на организмы интересны не только для истории биологии. В наше время они приобрели и практическое значение: воздействием среды люди стали изменять свойства растений и животных.

 

 

Ответ #89: 27 05 2010, 23:16:26 ( ссылка на этот ответ )

Его имя часто на слуху в самом обычном просторечии. «Эйнштейном здесь и не пахнет»; «Ничего себе Эйнштейн»; «Да, это точно не Эйнштейн!». В его век, когда доминировала как никогда ранее наука, он стоит особняком, словно некий символ интеллектуальной мощи. Иной раз даже как бы возникает мысль: человечество делится на две части — Альберт Эйнштейн и весь остальной мир.

   Эйнштейн со своими открытиями и откровениями был в центре всего нового, необычного, всего этого колдовства, такого загадочного и фантастического.
   Альберт Эйнштейн родился 14 марта 1879 года в маленьком австрийском городке Ульме. Герман Эйнштейн, отец великого физика, ещё в школьные годы выделялся среди своих однокашников великолепными математическими способностями. Альберту был один год, когда семья перебралась в Мюнхен. В пять лет Альберт увидел магнитный компас и преисполнился благоговейного трепета и удивления, не угасавших всю жизнь. Эти чувства лежали в основе всех его величайших научных достижений. Позднее, в двенадцать лет, он испытал такое же изумление, впервые заглянув в учебник геометрии.
   В Мюнхене Альберт поступил в начальную школу, а затем в луитпольдовскую гимназию. Закончив шесть классов, он жил до осени 1895 года в Милане и учился самостоятельно.
   Осенью 1895 года он приезжает в Швейцарию, чтобы поступить в Высшее техническое училище в Цюрихе, политехникум — так называлось кратко это учебное заведение. К сожалению, его знания по историко-филологическому циклу оказались недостаточными. Экзамены по ботанике и французскому языку были провалены. Директору политехникума очень понравился молодой человек-самоучка, и он посоветовал Эйнштейну поступить в последний класс кантональной школы в Аарау, чтобы получить аттестат зрелости.
   «Не переживайте, Джузеппе Верди тоже не сразу приняли в Миланскую консерваторию. У вас большое будущее, я в этом уверен», — сказал директор.
   После года обучения в Аарау, Альберт решил стать преподавателем физики, и в октябре 1896 года Эйнштейн, наконец, был принят в политехникум на учительский факультет.

   В первый год обучения в политехникуме Эйнштейн усердно работал в физической лаборатории, «увлечённый непосредственным соприкосновением с опытом». Кроме интереса к теоретической физике, в студенческие годы Эйнштейн интересуется геологией, историей культуры, экономикой, литературоведением. И продолжает заниматься и заниматься самообразованием… На его столе появляются труды Гельмгольца, Герца и даже Дарвина.
   Альберт делал всё для того, чтобы получить швейцарское гражданство. Кроме всех формальностей, ему необходимо было внести тысячу франков. Материальное положение семьи Эйнштейна было труднейшим, Герман Эйнштейн мог присылать сыну лишь 100 франков ежемесячно, большую часть из этой суммы Альберт откладывал, отказывая себе во всём. Питался он очень скромно, так же и одевался. Альберт надеялся на то, что, будучи гражданином Швейцарии, он сможет получить работу школьного учителя. Летом 1900 года политехникум был закончен, оценки, полученные Эйнштейном, были средние. Альберт получил диплом учителя физики и математики, а в 1901 году — швейцарское гражданство. В швейцарскую армию Эйнштейна не взяли, так как у него нашли плоскостопие и расширение вен.
   С момента окончания политехникума в 1900 году и до весны 1902 года Альберт Эйнштейн не мог найти постоянной работы. Эйнштейн был очень рад, когда ему представилась возможность заменять учителя в Винтертуре. Но это продолжалось недолго: работа кончилась, деньги кончились. Эйнштейн голодал. Такой образ жизни привёл к тому, что он получил болезнь печени, которая мучила его всю жизнь. Затем недолгое время Эйнштейн преподавал математику и физику в Шафхаузене, в пансионате для иностранцев, готовящихся к поступлению в учебные заведения Швейцарии.
   Дела шли хуже и хуже. Альберт как-то сказал, что, видимо, ему вскоре придётся ходить со скрипкой по улицам, чтобы заработать на кусок хлеба. В эти тяжёлые годы Эйнштейн написал статью «Следствия теории капиллярности», она была опубликована в 1901 году в берлинских «Анналах физики». В статье велись рассуждения о силах притяжения между атомами жидкостей.
   По рекомендации своего друга математика Марселя Гроссмана Альберт Эйнштейн был зачислен на должность эксперта третьего класса с годовым жалованием 3500 франков в федеральное бюро патентов в Берне. Там он проработал семь с лишним лет — с июля 1902 по октябрь 1909 года. Необременительная работа и простой уклад жизни позволили Эйнштейну именно в эти годы стать крупнейшим физиком-теоретиком. После работы у него оставалось достаточно много времени для того, чтобы заниматься собственными исследованиями.
   Через полгода после получения работы в патентном бюро Альберт Эйнштейн женился на Милеве Марич. Он поселился со своей женой в Берне. Эйнштейны снимали верхний этаж в доме бакалейщика. В мае 1904 года у Эйнштейнов родился сын, названный Гансом-Альбертом.

   Милева Марич (Марити) родилась в 1875 году в городе Тителе (Венгрия) в католической семье. Двадцатисемилетняя супруга меньше всего могла служить образцом швейцарской феи домашнего очага, вершиной честолюбия которой является сражение с пылью, молью и сором.
   Что для Эйнштейна означала хорошая хозяйка? «Хорошая хозяйка дома та, которая стоит где-то посередине между грязнушкой и чистюлей». По воспоминаниям матери Эйнштейна, Милева была ближе к первой.
   «Однако следует записать в пользу Милевы то, — продолжает Зелинг в своих воспоминаниях, — что она храбро делила с Эйнштейном годы нужды и создала ему для работы, правда, по богемному неустроенный, но всё же сравнительно спокойный домашний очаг». Да, впрочем, Эйнштейну мало и нужно было, ведь в повседневной жизни он хотел быть как можно более простым и непритязательным. Когда один из знакомых Эйнштейна спросил у него, почему для бритья и умывания он пользуется одним и тем же куском мыла, великий физик ответил: «Два куска мыла — это слишком сложно для меня». Сам Эйнштейн называл себя «цыганом» и «бродягой» и никогда не придавал значения своему внешнему виду.
   В 1904 году он закончил и послал в журнал «Анналы физики» статьи, посвящённые изучению вопросов статистической механики и молекулярной теории теплоты. В 1905 году эти статьи были напечатаны. Как выразился известный физик Луи де Бройль, эти работы были словно сверкающие ракеты, осветившие мрак ночи, открывшие нам нескончаемые и неизвестные просторы Вселенной.
   Учёный смог объяснить броуновское движение молекул и сделал вывод о том, что можно вычислить массу и число молекул, находящихся в данном объёме. Через несколько лет это открытие повторил французский физик Жан Перрон, получивший за него Нобелевскую премию.
   Во второй работе предлагалось объяснение фотоэффекта. Эйнштейн предположил, что некоторые металлы могут испускать электроны под действием электромагнитного излучения. В данном направлении стали работать сразу два учёных: француз Филипп Делинар и немец Макс Планк. Каждый из них за своё открытие получил Нобелевскую премию.

   Третья, самая замечательная работа Эйнштейна привела к созданию специальной теории относительности. Учёный пришёл к выводу, что ни один материальный объект не может двигаться быстрее света. На основании этого он пришёл к заключению, что масса тела зависит от скорости его движения и представляет собой «замороженную энергию», с которой связана формулой — масса, умноженная на квадрат скорости света.
   После публикации этих статей к Эйнштейну пришло академическое признание. Весной 1909 года Эйнштейн был назначен экстраординарным профессором теоретической физики Цюрихского университета.
   28 июля 1910 года у Эйнштейнов родился второй сын Эдуард. В начале 1911 года учёного пригласили занять самостоятельную кафедру в немецком университете в Праге. А летом следующего года Эйнштейн возвратился в Цюрих и занял место профессора в политехникуме, в том самом, где он сидел за студенческой скамьёй.
   Летом 1913 года Эйнштейн с сыном Гансом-Альбертом и Мари Кюри с её дочерьми Ирен и Евой провели некоторое время в одном из самых прекрасных мест Швейцарии, на леднике Энгадин. По воспоминаниям Мари Кюри, Эйнштейн даже в моменты отдыха, с рюкзаком на плечах, не переставал думать о той проблеме, которая волновала его в данный момент: «Однажды, когда мы поднимались на кручу и надо было внимательно следить за каждым шагом, Эйнштейн вдруг остановился и сказал: „Да, да, Мари, задача, которая сейчас стоит передо мной, — это выяснить подлинный смысл закона падения тел в пустоте“». Он потянулся было даже за листком бумаги и пером, торчавшими у него, как всегда, в боковом кармане. «Мари сказала, что… как бы им не пришлось проверять сейчас этот закон на своём собственном примере! Альберт громко расхохотался, и мы продолжали наш путь».
   Рождение новой теории было очень трудным для Эйнштейна, об этом он 25 июня 1913 года писал Маху: «В эти дни Вы, наверное, уже получили мою новую работу об относительности и гравитации, которая, наконец, была окончена после бесконечных усилий и мучительных сомнений. В будущем году во время солнечного затмения должно выясниться, искривляются ли световые лучи вблизи Солнца, другими словами, действительно ли подтверждается основное фундаментальное предположение об эквивалентности ускорения системы отсчёта, с одной стороны, и полем тяготения, с другой. Если да, то тем самым будут блестяще подтверждены — вопреки несправедливой критике Планка — Ваши гениальные исследования по основам механики. Потому что отсюда с необходимостью следует, что причиной инерции является особого рода взаимодействие тел — вполне в духе Ваших рассуждений об опыте Ньютона с ведром».
   В 1914 году Эйнштейна пригласили в Германию на должность профессора Берлинского университета и одновременно директора Физического института кайзера Вильгельма. В том же году разразилась Первая мировая война, но как швейцарский гражданин Эйнштейн не принял в ней участия.

   В 1915 году в Берлине учёный завершил свой шедевр — общую теорию относительности. В ней было не только обобщение специальной теории относительности, но излагалась и новая теория тяготения. Эйнштейн предположил, что все тела не притягивают друг друга, как считалось со времён Исаака Ньютона, а искривляют окружающее пространство и время. Это было настолько революционное представление, что многие учёные сочли вывод Эйнштейна шарлатанством. Среди прочих явлений, предсказывалось отклонение световых лучей в гравитационном поле, что и подтвердили английские учёные во время солнечного затмения 1919 года. Когда было официально объявлено о подтверждении его теории, Эйнштейн за одну ночь стал знаменит на весь мир. Он никогда не мог этого понять и, посылая рождественскую открытку своему другу Генриху Зангеру в Цюрих, писал: «Слава делает меня всё глупее и глупее, что, впрочем, вполне обычно. Существует громадный разрыв между тем, что человек собою представляет, и тем, что другие думают о нём или, по крайней мере, говорят вслух. Но всё это нужно принимать беззлобно».
   В 1918 году, через несколько недель после подписания перемирия, Эйнштейн поехал в Швейцарию. Во время своего визита он расторгнул брак с Милевой Марич. После развода со своей первой женой он продолжал заботиться о ней и о своих сыновьях, старший из которых уже оканчивал гимназию в Цюрихе. Когда в ноябре 1922 года Эйнштейну была присуждена Нобелевская премия, он передал сыновьям всю полученную сумму. И в то же время он постоянно заботился о двух дочерях своей второй жены Эльзы.
   Эльза Эйнштейн-Ловенталь родилась в 1876 году в Гехингене. Её отец Рудольф был двоюродным братом Германа Эйнштейна, её мать Фанни — родной сестрой Паулины Эйнштейн. Таким образом, Эльза была двоюродной сестрой Альберта по материнской линии и троюродной — по отцовской. Эльза и Альберт знали, конечно, друг друга ещё с детства. В двадцать лет Эльза вышла замуж за торговца по фамилии Ловенталь. От первого брака у неё родились две дочери, Ильза и Марго. Но брак был недолгим.
   2 июня 1919 года Эльза и Альберт Эйнштейн поженились. Ещё раньше дочери Эльзы официально приняли фамилию Эйнштейн. Альберт Эйнштейн переехал в квартиру новой жены. В 1920 году Эйнштейн писал Бессо, что «находится в хорошей форме и прекрасном настроении».
   Эльза ежечасно опекала своего мужа, своего «Альбертля». Чарли Чаплин, который познакомился с ней в 1931 году, писал: «Из этой женщины с квадратной фигурой так и била жизненная сила. Она откровенно наслаждалась величием своего мужа и вовсе этого не скрывала, её энтузиазм даже подкупал». А вот мнение Луначарского: «Она — женщина не первой молодости, седая, но обворожительная, всё ещё прекрасная красотой нравственной, больше даже, чем красотой физической. Она вся — любовь к своему великому мужу; она вся готова отдаться защите его от грубых прикосновений жизни и предоставлению ему того великого покоя, где зреют его мировые идеи. Она проникнута сознанием великого значения его как мыслителя и самым нежным чувством подруги, супруги и матери к нему, как к привлекательнейшему и своеобразному взрослому ребёнку». У Ильзы и Марго были прекрасные отношения с Эйнштейном. Эльза была безмерно счастлива.
   Несмотря на то что Эйнштейн был признан одним из крупнейших физиков мира, в Германии он подвергался преследованиям из-за своих антимилитаристских взглядов и революционных физических теорий. В Германии учёный прожил до 1933 года. Там он постепенно стал мишенью для ненависти. Ещё бы, либерал, гуманист, еврей, интернационалист, он вызывал злобу у тамошних националистов и антисемитов, поощряемых к тому же и несколькими немецкими учёными-завистниками. Мощная фракция, как характеризовал их Эйнштейн, находя вместе с тем всё происходящее полным комизма и достойным смеха. Он именовал её «Компанией теории антиотносительности, лимитед». Когда к власти пришёл Гитлер, Эйнштейн покинул страну и переехал в США, где начал работать в институте фундаментальных физических исследований в Принстоне,

   Слава Эйнштейна не меркла и вызвала колоссальный поток разнообразных писем. Например, школьница из Вашингтона жаловалась, что ей с трудом даётся математика и приходится заниматься больше других, чтобы не отстать от товарищей. Отвечая ей, Эйнштейн, в частности, писал: «Не огорчайтесь своими трудностями с математикой, поверьте, мои затруднения ещё больше, чем ваши».
   Второго августа 1939 года Эйнштейн обратился с письмом к президенту США Франклину Рузвельту о предупреждении возможности использования атомного оружия фашистской Германией. Он писал о том, что исследования по расщеплению урана могут привести к созданию оружия огромной разрушительной силы.
   Позднее учёный жалел об этом письме. Энштейн выступал с осуждением американской «атомной дипломатии», заключавшейся в монополии США в области атомного оружия. Он критиковал правительство Соединённых Штатов за то, что оно пыталось шантажировать другие страны.
   Учёный был категорически против разрушительного применения научных открытий, он верил, что в будущем научные открытия будут использованы только в интересах людей. Потрясённый ужасающими последствиями ядерных взрывов, учёный стал горячим противником войны, считая, что использование ядерного оружия представляет угрозу самому существованию человечества.
   Незадолго до смерти Эйнштейн стал одним из инициаторов воззвания крупнейших учёных мира, обращённого к правительствам всех стран, с предупреждением об опасности применения водородной бомбы. Это воззвание стало началом движения, объединившего виднейших учёных в борьбе за мир, которое получило название Пагуошского. После смерти Эйнштейна его возглавил крупнейший английский философ и физик Бертран Рассел.
   18 апреля 1955 года в 1 час 25 минут Эйнштейн умер от аневризмы аорты. Эйнштейн, ненавидевший культ личности, запретил всяческие погребальные церемонии. Двенадцать самых близких человек шли за гробом на следующий день. Место и время похорон не были известны больше никому (так гласило завещание). Речей не было, прах учёного Эйнштейна был предан огню в крематории Юинг-Симтери, пепел был развеян по ветру.

 

 

Страниц: 1 ... 16 17 18 19 20 | ВверхПечать