Максимум Online сегодня: 937 человек.
Максимум Online за все время: 4395 человек.
(рекорд посещаемости был 29 12 2022, 01:22:53)


Всего на сайте: 24816 статей в более чем 1761 темах,
а также 358990 участников.


Добро пожаловать, Гость. Пожалуйста, войдите или зарегистрируйтесь.
Вам не пришло письмо с кодом активации?

 

Сегодня: 04 05 2024, 12:12:47

Мы АКТИВИСТЫ И ПОСЕТИТЕЛИ ЦЕНТРА "АДОНАИ", кому помогли решить свои проблемы и кто теперь готов помочь другим, открываем этот сайт, чтобы все желающие, кто знает работу Центра "Адонаи" и его лидера Константина Адонаи, кто может отдать свой ГОЛОС В ПОДДЕРЖКУ Центра, могли здесь рассказать о том, что знают; пообщаться со всеми, кого интересуют вопросы эзотерики, духовных практик, биоэнергетики и, непосредственно "АДОНАИ" или иных центров, салонов или специалистов, практикующим по данным направлениям.

Страниц: 1 ... 15 16 17 18 19 20 | Вниз

Ответ #80: 25 05 2010, 02:15:19 ( ссылка на этот ответ )

Вернер Гейзенберг был одним из самых молодых учёных, получивших Нобелевскую премию. Целеустремлённость и сильный дух соперничества воодушевили его на открытие одного из наиболее известных принципов науки — принципа неопределённости.
   Вернер Карл Гейзенберг родился 5 декабря 1901 года в немецком городе Вюрцбурге. Отец Вернера, Август, благодаря успешной научной деятельности сумел подняться до уровня представителей высшего класса немецкой буржуазии. В 1910 году он стал профессором византийской филологии Мюнхенского университета. Матерью мальчика была урождённая Анна Веклейн.
   С самого рождения Вернера его семья твёрдо решила, что он тоже должен достичь высокого социального положения благодаря образованию. Полагая, что соперничество должно благоприятствовать достижению успеха в науке, отец провоцировал Вернера и его старшего брата Эрвина к постоянной конкуренции. В течение многих лет мальчики часто дрались, и однажды соперничество довело их до такой драки, что они били друг друга деревянными стульями. Повзрослев, каждый из них пошёл собственным путём: Эрвин уехал в Берлин и стал химиком, они почти не общались, не считая редких встреч в кругу семьи.
   В сентябре 1911 года Вернера отдали в престижную гимназию. В 1920 году Гейзенберг поступил в Мюнхенский университет. Окончив его, Вернер был назначен ассистентом профессора Макса Борна в Гёттингенском университете. Борн был уверен, что атомный микромир настолько отличается от макромира, описанного классической физикой, что учёным нечего и думать пользоваться при изучении строения атома привычными понятиями о движении и времени, скорости, пространстве и определённом положении частиц. Основа микромира — кванты, которые не следовало пытаться понять или объяснить с наглядных позиций устаревшей классики. Эта радикальная философия нашла горячий отклик в душе его нового ассистента.

   Действительно, состояние атомной физики напоминало в это время какое-то нагромождение гипотез. Вот если бы кому-нибудь удалось на опыте доказать, что электрон действительно волна, вернее, и частица и волна… Но таких опытов пока не было. А раз так, то и исходить из одних только предположений, что представляет собой электрон, по мнению педантичного Гейзенберга, было некорректно. А нельзя ли создать теорию, в которой будут только известные экспериментальные данные об атоме, полученные при изучении излучаемого им света? Что можно сказать об этом свете наверняка? Что он имеет такую-то частоту и такую-то интенсивность, не больше…
   По теории квантов атом испускает свет, переходя из одного энергетического состояния в другое. А по теории Эйнштейна интенсивность света определённой частоты зависит от количества фотонов. Значит, можно было попытаться связать интенсивность излучения с вероятностью атомных переходов. Квантовые колебания электронов, уверял Гейзенберг, нужно представлять только с помощью чисто математических соотношений. Надо лишь подобрать для этого подходящий математический аппарат. Молодой учёный выбрал матрицы. Выбор оказался удачным, и скоро его теория была готова. Работа Гейзенберга заложила основы науки о движении микроскопических частиц — квантовой механики.
   В ней вообще не говорится ни о каком движении электрона. Движения в прежнем смысле этого слова не существует. Матрицы описывают просто изменения состояния системы. Потому спорные вопросы об устойчивости атома, о вращении электронов вокруг ядра, о его излучении отпадают сами собой. Вместо орбиты в механике Гейзенберга электрон характеризуется набором или таблицей отдельных чисел вроде координат на географической карте.
   Надо сказать, что матричная механика появилась весьма кстати. Идеи Гейзенберга подхватили другие физики, и скоро, по выражению Бора, она приобрела «вид, который по своей логической завершённости и общности мог конкурировать с классической механикой».
   Впрочем, было в работе Гейзенберга и одно удручающее обстоятельство. По его словам, ему никак не удавалось вывести из новой теории простой спектр водорода. И каково было его удивление, когда некоторое время спустя после опубликования его работы… «Паули преподнёс мне сюрприз: законченную квантовую механику атома водорода. Мой ответ от 3 ноября начинался словами: „Едва ли нужно писать, как сильно я радуюсь новой теории атома водорода и насколько велико моё удивление, что Вы так быстро смогли её разработать“».
   Почти в то же самое время теорией атома с помощью новой механики занимался и английский физик Дирак. И у Гейзенберга, и у Дирака вычисления носили крайне абстрактный характер. Никто из них не уточнял сущность употребляемых символов. И лишь в конце вычислений вся их математическая схема давала правильный результат.

   Математические аппараты, которыми пользовались Гейзенберг и Дирак при разработке теорий атома в новой механике, были для большинства физиков и непривычны, и сложны. Не говоря уже о том, что никто из них, несмотря на все ухищрения, не мог свыкнуться с мыслью, что волна — это частица, а частица — волна. Как представить себе такого оборотня?
   Работавший в то время в Цюрихе Эрвин Шрёдингер подошёл к проблемам атомной физики совершенно с другой стороны и с другими целями. Его идея состояла в том, что любую движущуюся материю можно рассматривать в виде волн. Если это верно, то Шрёдингер превращал основы матричной механики Гейзенберга в нечто совершенно неприемлемое.
   В мае 1926 года Шрёдингер опубликовал доказательство того, что эти два конкурирующих подхода по существу математически эквивалентны. Гейзенберг и другие приверженцы матричной механики сразу же начали борьбу в защиту своей концепции, причём с обеих сторон она принимала всё более эмоциональную окраску. В защиту этого подхода они поставили на карту своё будущее. Шрёдингер же рисковал своей репутацией, отказываясь от признания кажущихся иррациональными понятий дискретности и квантовых скачков и возвращаясь к физическим закономерностям непрерывного, причинно обусловленного и рационального волнового движения. Ни одна из сторон не желала пойти на уступки, что означало бы признание профессионального превосходства противников. Сама суть и будущее направление развития квантовой механики внезапно стали предметом спора в научном мире.
   Этот раздор в дальнейшем усилился в связи с появлением карьерных амбиций со стороны Гейзенберга. Всего за несколько недель до того, как Шрёдингер опубликовал доказательство эквивалентности обоих подходов, Гейзенберг отказался от должности профессора в Лейпцигском университете, отдав предпочтение сотрудничеству с Бором в Копенгагене. Скептически настроенный Веклейн, дед Вернера, поспешил в Копенгаген, чтобы попытаться отговорить внука от принятого им решения; именно в этот момент появилась работа Шрёдингера об эквивалентности обоих подходов. Возобновившееся давление Веклейна и брошенный Шрёдингером вызов фундаментальным основам матричной физики заставили Гейзенберга удвоить усилия и попытаться сделать работу на таком высоком уровне, чтобы она получила широкое признание у специалистов, и в конечном итоге обеспечила бы получение места на какой-либо другой кафедре.
   Однако по крайней мере три события, происшедшие в 1926 году, вызвали у него ощущение огромной пропасти между его идеями и точкой зрения Шрёдингера. Первое из них — цикл лекций, прочитанный Шрёдингером в Мюнхене в конце июля и посвящённый его новой физике. На этих лекциях молодой Гейзенберг доказывал переполненной аудитории, что теория Шрёдингера не объясняет некоторых явлений. Однако он не сумел никого убедить и покинул конференцию в подавленном состоянии. Затем на осенней конференции немецких учёных и врачей Гейзенберг стал свидетелем полной и, с его точки зрения, ошибочной поддержки идей Шрёдингера.
   Наконец, в Копенгагене в сентябре 1926 года между Бором и Шрёдингером разгорелась дискуссия, в которой ни одна из сторон не добилась успеха. В итоге было признано, что никакую из существующих интерпретаций квантовой механики нельзя считать вполне приемлемой.

   Движимый в своей работе разными мотивами — личными, профессиональными и научными, — Гейзенберг в феврале 1927 года неожиданно дал нужную интерпретацию, сформулировав принцип неопределённости и не сомневаясь в его правильности.
   В письме к Паули от 23 февраля 1927 года он приводит почти все существенные подробности представленной ровно через месяц статьи «О квантовотеоретическом истолковании кинематических и механических соотношений», посвящённой принципу неопределённости.
   Согласно принципу неопределённости, одновременное измерение двух так называемых сопряжённых переменных, таких как положение (координата) и импульс движущейся частицы, неизбежно приводит к ограничению точности. Чем более точно измерено положение частицы, тем с меньшей точностью можно измерить её импульс, и наоборот. В предельном случае абсолютно точное определение одной из переменных ведёт к полному отсутствию точности при измерении другой.
   Неопределённость — это не вина экспериментатора: она является фундаментальным следствием уравнений квантовой механики и характерным свойством каждого квантового эксперимента. Кроме того, Гейзенберг заявил, что пока справедлива квантовая механика, принцип неопределённости не может быть нарушен. Впервые со времён научной революции ведущий физик провозгласил, что существуют пределы научного познания.
   Совместно с идеями таких светил, как Нильс Бор и Макс Борн, принцип неопределённости Гейзенберга вошёл в логически замкнутую систему «копенгагенской интерпретации», которую Гейзенберг и Борн перед встречей ведущих физиков мира в октябре 1927 года объявили полностью завершённой и неизменяемой. Эта встреча, пятая из знаменитых Сольвеевских конгрессов, произошла всего несколько недель спустя после того, как Гейзенберг стал профессором теоретической физики в Лейпцигском университете. Будучи всего двадцати пяти лет от роду, он стал самым молодым профессором в Германии.
   Гейзенберг впервые представил чётко сформулированный вывод о наиболее глубоком следствии из принципа неопределённости, связанном с отношением к классическому понятию причинности.

   Принцип причинности требует, чтобы каждому явлению предшествовала единственная причина. Это положение отрицается принципом неопределённости, доказываемым Гейзенбергом. Причинная связь между настоящим и будущим теряется, а законы и предсказания квантовой механики имеют вероятностный, или статистический, характер.
   Гейзенбергу и другим «копенгагенцам» потребовалось совсем немного времени, чтобы донести отстаиваемое ими учение до тех, кто не посещал европейских институтов. В Соединённых Штатах Гейзенберг нашёл особенно благоприятную среду для обращения в свою веру новых сторонников. Во время совместного с Дираком кругосветного путешествия в 1929 году Гейзенберг прочёл в Чикагском университете оказавший огромное влияние на слушателей курс лекций по «копенгагенской доктрине». В предисловии к своим лекциям Гейзенберг писал: «Цель этой книги можно считать достигнутой, если она будет содействовать утверждению копенгагенского духа квантовой теории… который указал дорогу общему развитию современной атомной физики».
   Когда «носитель» этого «духа» вернулся в Лейпциг, его ранние научные труды были широко признаны в той области профессиональной деятельности, которая обеспечивала ему высокое положение как в обществе, так и в науке. В 1933 году одновременно со Шрёдингером и Дираком его работы получили высшее признание — Нобелевскую премию.
   В течение пяти лет в Институте Гейзенберга были созданы важнейшие квантовые теории твёрдокристаллического состояния, молекулярной структуры, рассеяния излучения на ядрах и протон-нейтронной модели ядер. Совместно с другими теоретиками они сделали огромный шаг в сторону релятивистской квантовой теории поля и заложили основы для развития исследований в области физики высоких энергий.
   Эти достижения привлекли многих лучших студентов в такое научное учреждение, как Институт Гейзенберга. Воспитанные в традициях «копенгагенской доктрины», они сформировали новое доминирующее поколение физиков, которые распространили эти идеи, разъехавшись по всему миру в тридцатые годы после прихода к власти Гитлера.
   Хотя Гейзенберг по праву считается сегодня одним из величайших физиков современности, он в то же время подвергается критике за многие его поступки после прихода к власти Гитлера. Гейзенберг никогда не был членом нацистской партии, однако он занимал высокие академические должности и был символом немецкой культуры на оккупированных территориях. С 1941 по 1945 год Гейзенберг был директором института физики кайзера Вильгельма и профессором Берлинского университета. Не раз отвергая предложения эмигрировать, он возглавил основные исследования по расщеплению урана, в которых был заинтересован Третий рейх.

   После окончания войны учёный был арестован и отправлен в Англию. Гейзенберг давал различные объяснения своим действиям, которые ещё больше способствовали падению его репутации за границей. Верный сын своей страны, Гейзенберг, которому удалось проникнуть в тайны природы, не сумел разглядеть и понять глубину трагедии, в которую была ввергнута Германия.
   В 1946 году Гейзенберг вернулся в Германию. Он становится директором Физического института и профессором Гёттингенского университета. С 1958 года учёный являлся директором Физического университета и астрофизики, а также профессором Мюнхенского университета.
   В последние годы усилия Гейзенберга были направлены на создание единой теории поля. В 1958 году он проквантовал нелинейное спинорное уравнение Иваненко (уравнение Иваненко—Гейзенберга). Немало его работ посвящено философским проблемам физики, в частности теории познания, где он стоял на позиции идеализма.
   Гейзенберг умер в своём доме в Мюнхене 1 февраля 1976 года от рака почки и жёлчного пузыря.

 

 

Ответ #81: 25 05 2010, 12:24:02 ( ссылка на этот ответ )

На рубеже XVII и XVIII веков астрономия ограничивалась знаниями о солнечной системе. О природе звёзд, о расстояниях между ними, об их распределении в пространстве ещё ничего не было известно. Первые попытки глубже проникнуть в тайну строения звёздной Вселенной путём тщательных наблюдений при помощи возможно более сильных телескопов связаны с именем астронома Гершеля.
   Фридрих Вильгельм Гершель родился 15 ноября 1738 года в Ганновере в семье гобоиста ганноверской гвардии Исаака Гершеля и Анны Ильзы Морицен. Протестанты Гершели были выходцами из Моравии, которую покинули, вероятно, из религиозных соображений. Атмосферу родительского дома можно назвать интеллектуальной. «Биографическая записка», дневник и письма Вильгельма, воспоминания его младшей сестры Каролины вводят нас в дом и мир интересов Гершеля и показывают тот воистину титанический труд и увлечённость, создавшие выдающегося наблюдателя и исследователя. Он получил обширное, но несистематическое образование. Занятия по математике, астрономии, философии выявили его способности к точным наукам. Но, кроме этого, Вильгельм обладал большими музыкальными способностями и в четырнадцать лет вступил музыкантом в полковой оркестр. В 1757 году, после четырёх лет военной службы, он уехал в Англию, куда несколько ранее переселился брат его Яков, капельмейстер ганноверского полка.
   Не имея ни гроша в кармане, Вильгельм, переименованный в Англии в Вильяма, занялся в Лондоне перепиской нот. В 1766 году он переселился в Бат, где скоро достиг большой известности как исполнитель, дирижёр и музыкальный педагог. Но такая жизнь не могла его полностью удовлетворить. Интерес Гершеля к естествознанию и философии, постоянное самостоятельное образование привели его к увлечению астрономией. «Как жаль, что музыка не в сотню раз труднее науки, я люблю деятельность и мне необходимо занятие», — писал он брату.
   В 1773 году Гершель приобрёл ряд трудов по оптике и астрономии. «Полная система оптики» Смита и «Астрономия» Фергюсона стали его настольными книгами. В том же году он впервые взглянул на небо в небольшой телескоп с фокусным расстоянием около 75 см, но наблюдения со столь малым увеличением не удовлетворили исследователя. Поскольку средств на покупку более светосильного телескопа не было, он решил сделать его сам. Купив необходимые инструменты и заготовки, он самостоятельно отлил и отшлифовал зеркало для своего первого телескопа. Преодолев большие трудности, Гершель в том же 1773 году изготовил рефлектор с фокусным расстоянием более 1,5 м. Шлифовку зеркал Гершель производил вручную (машину для этой цели он создал только через пятнадцать лет), часто работая по 10, 12 и даже 16 часов подряд, так как остановка процесса шлифовки ухудшала качество зеркала. Работа оказалась не только тяжёлой, но и опасной, однажды при изготовлении заготовки для зеркала взорвалась плавильная печь.
   Сестра Каролина и брат Александр были верными и терпеливыми помощниками Вильяма в этой нелёгкой работе. Трудолюбие и энтузиазм дали превосходные результаты. Зеркала, изготовленные Гершелем из сплава меди и олова, были прекрасного качества и давали совершенно круглые изображения звёзд.

   Как пишет известный американский астроном Ч. Уитни, «с 1773 по 1782 годы Гершели были заняты тем, что превращались из профессиональных музыкантов в профессиональных астрономов».
   В 1775 году Гершель начал свой первый «обзор неба». В это время он ещё продолжал зарабатывать себе на жизнь музыкальной деятельностью, но истинной его страстью стали астрономические наблюдения. В перерывах между уроками музыки он занимался изготовлением зеркал для телескопов, вечерами давал концерты, а ночи проводил за наблюдением звёзд. Для этой цели Гершель предложил оригинальный новый способ «звёздных черпков», т. е. подсчёта количества звёзд на определённых площадках неба.
   13 марта 1781 года, во время наблюдений, Гершель заметил нечто необычное: «Между десятью и одиннадцатью вечера, когда я изучал слабые звёзды в соседстве с

 

 

Ответ #82: 26 05 2010, 00:10:20 ( ссылка на этот ответ )

Загадка Гиббса заключается не в том, был ли он неправильно понятым или неоценённым гением. Загадка Гиббса состоит в другом: как случилось, что прагматическая Америка в годы царствования практицизма произвела на свет великого теоретика? До него в Америке не было ни одного теоретика. Впрочем, как почти не было теоретиков и после. Подавляющее большинство американских учёных — экспериментаторы.
   Джозия Уиллард Гиббс родился 11 февраля 1839 года в Нью-Хейвене, штат Коннектикут, в семье профессора Йельского университета. В течение шести поколений его семья славилась в Новой Англии своей учёностью. Один из его предков был президентом Гарвардского университета, другой — секретарём Массачусетской колонии и первым президентом Принстонского университета. Отец Гиббса считался выдающимся теологом.

   Когда Гиббсу было десять лет, он начал учиться в небольшой частной школе в Нью-Хейвене, расположенной в том же квартале, что и его дом. Он рос тихим, застенчивым мальчиком, всегда следовал за другими, никогда не был вожаком, но и никогда не оставался в стороне. В 1854 году юноша поступил в Йельский университет, а в 1858 году Гиббс получил диплом бакалавра.
   В те годы в Шеффилде создавалась научная школа. В 1847 году при ней была открыта аспирантура. Но только в 1861 году эта школа получила право присуждать степень доктора физики. Гиббсу со временем суждено было стать величайшим американским теоретиком науки, но его обучение шло по линии американского практицизма. В 1863 году он первый в Америке получил степень доктора физики за работу по инженерной механике. Диссертация называлась «О форме зубцов в зубчатом сцеплении». Он тут же получил место преподавателя в колледже на три года. Отец Гиббса умер в 1861 году, оставив детям 23 500 долларов. Таким образом, Гиббс мог жить на небольшой доход.
   Преподавая, Гиббс не переставал заниматься своим любимым делом — механикой. Он написал несколько работ о паровых турбинах и изобрёл железнодорожный тормоз, работающий под действием силы инерции поезда. Когда окончился срок его преподавания в Йеле в 1866 году, Гиббс вместе с двумя сёстрами отправился за границу. Это был поворотный момент в его карьере. В Европе он получил углублённое образование, ставшее прочным фундаментом для самой главной работы в его жизни.
   Сначала он занимался в Сорбонне и Коллеж де Франс. По шестнадцать часов в неделю Гиббс слушал лекции и занимался у таких физиков и математиков, как Дюамель и Лювилль.
   Здесь же Гиббс впервые прочёл работы Лапласа, Пуассона, Лагранжа и Коши. На следующий год он отправился в Берлин, где учился у Кундта и Вейерштрасса. Проведя год в Берлине, он переехал в Гейдельберг, где читали лекции такие выдающиеся учёные, как Кирхгоф, Кантор, Бунзен и Гельмгольц, от которых он узнал ещё больше о теоретической физике.
   Вернувшись в Америку в 1869 году, он поселился в доме отца в Нью-Хейвене вместе с сестрой, которая во время заграничной поездки вышла замуж. 13 июля 1871 года в ведомостях Йельского университета было напечатано сообщение о том, что «мистер Джозия Уиллард Гиббс назначен профессором математики и физики, без жалованья, на факультет философии и изящных искусств».

   Эта кафедра была первой в Америке. Только потому, что окружающие хорошо знали возможности Гиббса и верили в его большое будущее, Йельский университет счёл возможным назначить его на этот пост.
   Став профессором, он читал механику, волновую оптику, векторный анализ, теорию электричества и магнетизма. В 1873 году появились его первые термодинамические работы «Графические методы в термодинамике жидкостей» и «Метод геометрического представления термодинамических свойств веществ при помощи поверхностей». В большом исследовании «О равновесии гетерогенных систем», публиковавшемся в 1875–1878 годах, Гиббс развил и широко применил своё учение.
   Исаак Ньютон в своё время расширил понятие о равновесии, включив в него движение. Его открытие произвело одну из величайших в истории интеллектуальных революций. Работа Гиббса имеет не меньшее значение. Он расширил понятие о равновесии, включив в него изменение состояния материи. Лёд становится водой, вода превращается в пар, пар превращается в кислород и водород. Водород, соединяясь с азотом, превращается в аммиак. Любой процесс в природе есть процесс изменения; законы подобных изменений были открыты Гиббсом. Так же как Ньютон открыл законы механики, Гиббс создал законы физической химии, которая стала основной химической наукой.
   Гиббсу предстояло найти единицу измерения состояния вещества, которая бы показывала, подвергнется ли это вещество какому-нибудь превращению или останется прежним.
   Ключом для открытия Гиббса стала скорость частички, пропорциональная её энергии. Наука, изучающая тепловую энергию, называется термодинамикой. Гиббс писал: «Законы термодинамики… выражают… поведение систем, состоящих из большого количества частиц».
   Вода, нагреваемая при постоянном объёме, теряет определённое количество теплоты, которое уходит во внутреннюю структуру молекулы. Жидкий аммиак при такой же трансформации, превращаясь в газообразный аммиак, также теряет какое-то количество теплоты. Это свойство внутреннего поглощения теплоты получило название энтропии.

   Количественное изменение энтропии в каждой реакции имеет громадное значение. Изменение энтропии, происходящее при кипячении жидкостей в постоянном объёме, равняется теплоте испарения, делённой на температуру кипения. Изменения энтропии в каждой реакции можно узнать простым арифметическим действием: количество калорий, необходимых для протекания реакции, делится на температуру в градусах, при которой происходит реакция. Гиббс ввёл слово «энтропия» в качестве термина в термодинамику.
   В этих двух примерах лишь один компонент (вода в первом случае и аммиак в другом) изменил фазу, перейдя из жидкости в газ. Гиббс расширил это понимание, включив в него несколько компонентов, так что можно было рассматривать смеси жидкостей и смеси твёрдых веществ. Когда же он ещё далее расширил границы своей теории, охватив ею компоненты, которые соединяются друг с другом, он, наконец, открыл уравнение, описывающее химические реакции и их равновесие.
   Для таких систем Гиббс определил новые величины, связанные с энтропией, которые позволили ему предсказать заранее, произойдёт или не произойдёт химическая реакция или физическое превращение, и если произойдёт, то до каких пор реакция будет продолжаться. Он назвал эти величины химическими потенциалами. Так же как энтропия, химические потенциалы являются физическим свойством вещества.
   Результатом этих исследований явилось знаменитое правило фазы Гиббса. Он изложил его всего на четырёх страницах, не приведя какого-либо конкретного примера. В течение последующих пятидесяти лет учёные написали множество книг и монографий, посвящённых правилу фазы Гиббса, описывая его применительно к минералогии, петрографии, физиологии, металлургии и всем остальным областям науки.
   Правило устанавливало условия, которые необходимо соблюдать для того, чтобы определённые соединения находились в состоянии равновесия в различных фазах: в жидком, твёрдом и газообразном состояниях. Вскоре оно было признано наиболее важным линейным уравнением в истории науки.
   В течение пятидесяти лет после открытия Гиббса химия проникла во все главные отрасли мировой индустрии. Благодаря результатам работ Гиббса выплавка стали сделалась химическим процессом, так же как и выпечка хлеба, изготовление цемента, добыча соли, производство жидкого топлива, бумаги, вольфрамовой нити для электрических лампочек, одежды и сотни тысяч других предметов.

   Труды Гиббса были использованы также для объяснения действия вулканов, физиологических процессов, происходящих в крови, электролитического действия аккумуляторов и для производства химических удобрений.
   В течение пятидесяти лет после смерти Гиббса четыре раза Нобелевская премия присуждалась работам, основанным на его трудах.
   Вскоре после окончания своего классического исследования весной 1879 года Гиббс был избран членом Национальной академии США, в 1880 году — членом Американской академии наук и искусств в Бостоне. Научная слава Гиббса быстро росла после опубликования его термодинамических работ. Он избирается членом многих зарубежных академий и научных обществ, получает научные награды.
   Помимо термодинамики, Гиббс сделал ценный вклад в векторную алгебру. В природе существует много величин, которые необходимо характеризовать не только количественно, но и по направлению. Векторная алгебра Гиббса упростила обращение с пространством. Обобщённый гиббсовский вектор стал со временем мощным орудием науки, родившейся, когда Гиббс был уже в преклонном возрасте, и так и оставшейся ему неизвестной — теории относительности.
   В своих ранних исследования: равновесия Гиббс исходил из предположения, что материя является сплошной массой. Позже он осознал, что материя состоит из мельчайших частиц, находящихся в движении. Он пересмотрел свою термодинамику с учётом этого открытия, разбирая термодинамические явления на статистической основе. Ньютоновская механика стала статистической механикой.
   В 1902 году вышел фундаментальный труд Гиббса «Основы статистической механики». Основываясь на совершенно самостоятельных предположениях, Гиббс при помощи статистической механики открыл новый смысл энтропии и других родственных величин, которые казались такими могущественными в первом приближении.

   На основе классического второго закона термодинамики современники Гиббса предсказывали «конец света», когда энтропия Вселенной приблизится к максимуму, то есть выйдет за пределы, после которых будет невозможен переход энергии в виды, пригодные для использования. Это состояние было названо «тепловой смертью». Её ужасающее описание дал знаменитый писатель-фантаст Герберт Уэллс в романе «Машина времени».
   Статистическая механика Гиббса показала, что такой исход вовсе не неизбежен. Оказалось, что шансы на «спасение» учёные значительно преуменьшили. Ньютон ничего не знал о строении планет и звёзд. Его уравнения движения планет не находились в зависимости от их природы и были совершенно верны в пределах ньютоновской механики. Гиббс и его современники ничего не знали о структуре молекулы. Сам Гиббс понимал это. Он писал: «Тот, кто основывает свою работу на гипотезе, относящейся к строению материи, возводит здание на песке».
   Подобно Ньютону, Гиббс обладал даром провидения, и его статистическая механика пережила все последующие открытия в атомной и ядерной физике.
   Гиббс подошёл к основным истинам природы так близко, как это делали до него лишь величайшие учёные. Работы Гиббса трудно читать и понимать. Он делал несколько предварительных набросков, потом развивал свои исследования в уме, пока они не достигали полного совершенства. Когда же он принимался излагать свои теории на бумаге, он опускал промежуточные этапы в ходе своих рассуждений, так как ему казалось, что они уже не имеют значения.
   Труды Гиббса нашли широкое понимание и применение только через десять—двадцать лет. В трёхвековой истории современной науки можно насчитать не более десятка идей такой же важности и глубины, как теория равновесия, принадлежащая Гиббсу. И в каждом случае требовалось, по меньшей мере, два десятилетия, чтобы эти новые идеи были восприняты во всём их объёме. Коллеги Гиббса по Йельскому университету, вероятно, не понимали значения его работы, но они, разумеется, знали, что он гений.
   Гиббс был стройным человеком среднего роста, спокойным и уверенным, с типичным лицом янки. Аккуратная борода, которую он носил по тогдашней моде, придавала ему респектабельность. Голос у него был тонкий, говорил он учтивой скороговоркой. О нём, человеке быстрого ума, со склонностью к тонкой иронии, дети вспоминали только как о добром и мягком дяде Уилле. Взгляд его ярко блестевших глаз был проницателен и остр. Он умел нести смешную чепуху, затевать весёлые игры и шалости и не очень стремился к новым знакомствам. «Мне необходим был совет, и я знал, что он может помочь мне не только потому, что он великий учёный, но и потому, что я чувствовал в нём доброго и чуткого человека» — так говорили о Гиббсе его племянники, племянницы, друзья и студенты.

   Гиббс был одним из тех людей, чью скромность можно назвать страстью. В течение своей жизни он получил девятнадцать наград и почётных дипломов, в том числе главную международную премию за научные достижения. Но даже самые близкие его друзья не знали о его успехах в полной мере до тех пор, пока не прочли некролога в газетах.
   Основываясь на трудах Гиббса, Джеймс Максвелл заказал объёмную гипсовую модель кривых Гиббса и послал ему в подарок. Трудно было придумать лучший знак восхищения одного великого учёного другим. Студенты, которые хорошо знали происхождение модели, спросили у него однажды:
   — Кто прислал вам эту модель?
   Он ответил коротко:
   — Один приятель.
   — А кто этот приятель?

   — Один англичанин.
   Долго оставалось загадкой, каким образом у Максвелла в самом расцвете его славы нашлось достаточно времени и проницательности, чтобы раскопать статьи Гиббса, которые были напечатаны в никому не известном журнале Коннектикутской академии наук. Но и эта тайна была, в конце концов, разгадана. Максвелл узнал о статье Гиббса весьма простым способом — он получил её по почте. Гиббс, которого постоянно обвиняли в том, что он не интересуется отзывами других учёных о своей работе, рассылал оттиски своих статей наиболее известным учёным. Гиббс составил список из пятисот семи имён учёных, живших в двадцати странах. В течение своей жизни он написал двадцать монографий и каждую из них лично послал тем учёным из своего списка, для которых они могли представлять интерес.
   Работа для Гиббса служила оправданием всей его жизни, и он был счастлив, потому что знал, насколько велик его труд. Последние годы его жизни были омрачены не только потерей сестры и близких друзей, но также и появлением новых революционных идей в области физики, рентгеновских лучей, электронов. Он ещё не знал, как эти неожиданные открытия могут быть совместимы с его понятием о Вселенной. Однажды новое открытие настолько расстроило его, что он сказал своим студентам, растерянно качая головой: «Пожалуй, настало время мне уходить». Он чувствовал себя усталым, одиноким, и то, что раньше оправдывало его жизнь, казалось, ушло навсегда.
   Но Гиббс тревожился напрасно. Он умер 28 апреля 1903 года, но квантовая механика не опровергла его трудов. Макс Планк, читая лекции по теоретической физике и объясняя свою теорию в Колумбийском университете в 1909 году, в частности, сказал: «Как глубоко охватывает это предложение (принцип возрастания энтропии) все физические и химические отношения, на это лучше и полнее других было указано Джозия Уиллардом Гиббсом, одним из наиболее знаменитых теоретиков всех времён не только Америки, но и всего мира».

 

 

Ответ #83: 26 05 2010, 08:50:33 ( ссылка на этот ответ )

По меткому выражению одного учёного, математик — это тот, кто умеет находить аналогии между утверждениями. Лучший математик — кто устанавливает аналогии доказательств. Более сильный может заметить аналогии теорий. Но есть и такие, кто между аналогиями видит аналогии. Вот к этим редким представителям последних и относится Андрей Николаевич Колмогоров — один из лучших, если не лучший математик двадцатого века.
   Андрей Николаевич Колмогоров родился 12 (25) апреля 1903 года в Тамбове. Тётушки Андрея в своём доме организовали школу для детей разного возраста, которые жили поблизости, занимались с ними — десятком ребятишек — по рецептам новейшей педагогики. Для ребят издавался рукописный журнал «Весенние ласточки». В нём публиковались творческие работы учеников — рисунки, стихи, рассказы. В нём же появлялись и «научные работы» Андрея — придуманные им арифметические задачи. Здесь же мальчик опубликовал в пять лет свою первую научную работу по математике. Правда, это была всего-навсего известная алгебраическая закономерность, но ведь мальчик сам её подметил, без посторонней помощи!

   В семь лет Колмогорова определили в частную гимназию. Она была организована кружком московской прогрессивной интеллигенции и всё время находилась под угрозой закрытия.
   Андрей уже в те годы обнаруживает замечательные математические способности, но всё-таки ещё рано говорить, что дальнейший путь его уже определился. Были ещё увлечение историей, социологией. Одно время он мечтал стать лесничим.
   «В 1918–1920 годах жизнь в Москве была нелёгкой, — вспоминал Андрей Николаевич. — В школах серьёзно занимались только самые настойчивые. В это время мне пришлось уехать на строительство железной дороги Казань—Екатеринбург. Одновременно с работой я продолжал заниматься самостоятельно, готовясь сдать экстерном за среднюю школу. По возвращении в Москву я испытал некоторое разочарование: удостоверение об окончании школы мне выдали, даже не потрудившись проэкзаменовать».
   Когда в 1920 году Андрей Колмогоров стал думать о поступлении в институт, перед ним возник вечный вопрос: чему себя посвятить, какому делу? Влечёт его на математическое отделение университета, но есть и сомнение: здесь чистая наука, а техника — дело, пожалуй, более серьёзное. Вот, допустим, металлургический факультет Менделеевского института! Настоящее мужское дело, кроме того, перспективное. Андрей решает поступать и туда и сюда. Но вскоре ему становится ясно, что чистая наука тоже очень актуальна, и он делает выбор в её пользу.
   В 1920 году он поступил на математическое отделение Московского университета.
   «Задумав заниматься серьёзной наукой, я, конечно, стремился учиться у лучших математиков, — вспоминал позднее учёный. — Мне посчастливилось заниматься у П. С. Урысона, П. С. Александрова, В. В. Степанова и Н. Н. Лузина, которого, по-видимому, следует считать по преимуществу моим учителем в математике. Но они „находили“ меня лишь в том смысле, что оценивали приносимые мною работы.

   „Цель жизни“ подросток или юноша должен, мне кажется, найти себе сам. Старшие могут этому лишь помочь».
   В первые же месяцы Андрей сдал экзамены за курс. А как студент второго курса он получает право на «стипендию»: шестнадцать килограммов хлеба и килограмм масла в месяц — это настоящее благополучие! Теперь есть и свободное время. Оно отдаётся попыткам решить уже поставленные математические задачи.
   Лекции профессора Московского университета Николая Николаевича Лузина, по свидетельству современников, были выдающимся явлением. У Лузина никогда не было заранее предписанной формы изложения. И его лекции ни в коем случае не могли служить образцом для подражания. У него было редкое чувство аудитории. Он, как настоящий актёр, выступающий на театральной сцене и прекрасно чувствующий реакцию зрительного зала, имел постоянный контакт со студентами. Профессор умел приводить студентов в соприкосновение с собственной математической мыслью, открывая таинства своей научной лаборатории. Приглашал к совместной духовной деятельности, к сотворчеству.
   А какой это был праздник, когда Лузин приглашал учеников к себе домой на знаменитые «среды»! Беседы за чашкой чая о научных проблемах… Впрочем, почему обязательно о научных? Тем для разговора было предостаточно. Он умел зажечь молодёжь желанием научного подвига, привить веру в собственные силы, и через это чувство приходило другое — понимание необходимости полной отдачи любимому делу.
   Колмогоров впервые обратил на себя внимание профессора на одной лекции. Лузин, как всегда, вёл занятия, постоянно обращаясь к слушателям с вопросами, заданиями. И когда он сказал: «Давайте строить доказательство теоремы, исходя из следующего предположения…» — в аудитории поднялась рука Андрея Колмогорова: «Профессор, оно ошибочно». За вопросом «почему» последовал краткий ответ первокурсника. Довольный Лузин кивнул: «Что ж, приходите на кружок, доложите нам свои соображения более развёрнуто».
   «Хотя моё достижение было довольно детским, оно сделало меня известным в „Лузитании“», — вспоминал Андрей Николаевич.

   Но через год серьёзные результаты, полученные восемнадцатилетним второкурсником Андреем Колмогоровым, обратили на себя настоящее внимание «патриарха». С некоторой торжественностью Николай Николаевич предлагает Колмогорову приходить в определённый день и час недели, предназначенный для учеников его курса. Подобное приглашение, по понятиям «Лузитании», следовало расценивать как присвоение почётного звания ученика. Как признание способностей.
   Первые публикации Колмогорова были посвящены проблемам дескриптивной и метрической теории функций. Наиболее ранняя из них появилась в 1923 году. Обсуждавшиеся в середине двадцатых годов повсюду, в том числе в Москве, вопросы оснований математического анализа и тесно с ними связанные исследования по математической логике привлекли внимание Колмогорова почти в самом начале его творчества. Он принял участие в дискуссиях между двумя основными противостоявшими тогда методологическими школами — формально-аксиоматической (Д. Гильберт) и интуиционистской (Л. Э. Я. Броуэр и Г. Вейль). При этом он получил совершенно неожиданный первоклассный результат, доказав в 1925 году, что все известные предложения классической формальной логики при определённой интерпретации переходят в предложения интуиционистской логики. Глубокий интерес к философии математики Колмогоров сохранил навсегда.
   Многие годы тесного и плодотворного сотрудничества связывали его с А. Я. Хинчиным, который в то время начал разработку вопросов теории вероятностей. Она и стала областью совместной деятельности учёных.
   Наука «о случае» ещё со времён Чебышёва являлась как бы русской национальной наукой. Её успехи преумножили советские математики.
   Особое значение для приложения математических методов к естествознанию и практическим наукам имел закон больших чисел. Разыскать необходимые и достаточные условия, при которых он имеет место, — вот в чём заключался искомый результат. Крупнейшие математики многих стран на протяжении десятилетий безуспешно старались его получить. В 1926 году эти условия были получены аспирантом Колмогоровым.
   Андрей Николаевич до конца своих дней считал теорию вероятностей главной своей специальностью, хотя областей математики, в которых он работал, можно насчитать добрых два десятка.

   Но тогда только начиналась дорога Колмогорова и его друзей в науке. Они много работали, но не теряли чувства юмора. В шутку называли уравнения с частными производными «уравнениями с несчастными производными», такой специальный термин, как конечные разности, переиначивался в «разные конечности», а теория вероятностей — в «теорию неприятностей».
   Норберт Винер, отец кибернетики, свидетельствовал: «…Хинчин и Колмогоров, два наиболее видных русских специалиста по теории вероятностей, долгое время работали в той же области, что и я. Более двадцати лет мы наступали друг другу на пятки: то они доказывали теорему, которую я вот-вот готовился доказать, то мне удавалось прийти к финишу чуть-чуть раньше их».
   И ещё одно признание Винера, которое он однажды сделал журналистам: «Вот уже в течение тридцати лет, когда я читаю труды академика Колмогорова, я чувствую, что это и мои мысли. Это всякий раз то, что я и сам хотел сказать».
   В 1930 году Колмогоров стал профессором МГУ, с 1933 по 1939 год был ректором Института математики и механики МГУ, многие годы руководил кафедрой теории вероятностей и лабораторией статистических методов. В 1935 году Колмогорову была присвоена степень доктора физико-математических наук, в 1939 году он был избран членом АН СССР. Незадолго до начала Великой Отечественной войны Колмогорову и Хинчину за работы по теории вероятностей была присуждена Государственная премия.
   А 23 июня 1941 года состоялось расширенное заседание Президиума Академии наук СССР. Принятое на нём решение кладёт начало перестройке деятельности научных учреждений. Теперь главное — военная тематика: все силы, все знания — победе. Советские математики по заданию Главного артиллерийского управления армии ведут сложные работы в области баллистики и механики. Колмогоров, используя свои исследования по теории вероятностей, даёт определение наивыгоднейшего рассеивания снарядов при стрельбе.
   Война завершилась, и Колмогоров возвращается к мирным исследованиям. Трудно даже кратко осветить вклад Колмогорова в другие области математики — общую теорию операций над множествами, теорию интеграла, теорию информации, гидродинамику, небесную механику и т. д. вплоть до лингвистики. Во всех этих дисциплинах многие методы и теоремы Колмогорова являются, по общему признанию, классическими, а влияние его работ, как и работ его многочисленных учеников, среди которых немало выдающихся математиков, на общий ход развития математики чрезвычайно велико.

   Когда одного из молодых коллег Колмогорова спросили, какие чувства он испытывает по отношению к своему учителю, тот ответил: «Паническое уважение… Знаете, Андрей Николаевич одаривает нас таким количеством своих блестящих идей, что их хватило бы на сотни прекрасных разработок».
   Замечательная закономерность: многие из учеников Колмогорова, обретая самостоятельность, начинали играть ведущую роль в избранном направлении исследований. И академик с гордостью подчёркивает, что наиболее дороги ему ученики, превзошедшие учителя в научных поисках.
   Можно удивляться колмогоровскому подвижничеству, его способности одновременно заниматься — и небезуспешно! — сразу множеством дел. Это и руководство университетской лабораторией статистических методов исследования, и заботы о физико-математической школе-интернате, инициатором создания которой Андрей Николаевич являлся, и дела московского математического общества, и работа в редколлегиях «Кванта» — журнала для школьников и «Математики в школе» — методического журнала для учителей, и научная и преподавательская деятельность, и подготовка статей, брошюр, книг, учебников. Колмогорова никогда не приходилось упрашивать выступить на студенческом диспуте, встретиться со школьниками на вечере. По сути дела, он всегда был в окружении молодых. Его очень любили, к его мнению всегда прислушивались. Свою роль играл не только авторитет всемирно известного учёного, но и простота, внимание, духовная щедрость, которую он излучал.
   Круг жизненных интересов Андрея Николаевича не замыкался чистой математикой, объединению отдельных разделов которой в одно целое он посвятил свою жизнь. Его увлекали и философские проблемы, и история науки, и живопись, и литература, и музыка.
   Академик Колмогоров — почётный член многих иностранных академий и научных обществ. В марте 1963 года учёный был удостоен международной премии Больцано, которую называют «Нобелевской премией математиков» (в завещании Нобеля работы математиков оговорены не были). В том же году Андрею Николаевичу присвоили звание Героя Социалистического Труда. В 1965 году ему присуждена Ленинская премия (совместно с В. И. Арнольдом). В последние годы Колмогоров заведовал кафедрой математической логики.
   «Я принадлежу, — говорил учёный, — к тем крайне отчаянным кибернетикам, которые не видят никаких принципиальных ограничений в кибернетическом подходе к проблеме жизни и полагают, что можно анализировать жизнь во всей её полноте, в том числе и человеческое сознание, методами кибернетики. Продвижение в понимании механизма высшей нервной деятельности, включая и высшие проявления человеческого творчества, по-моему, ничего не убавляет в ценности и красоте творческих достижений человека».

   Колмогоров скончался 20 октября 1987 г. в Москве. Похоронен на Новодевичьем кладбище.

 

 

Ответ #84: 26 05 2010, 09:19:47 ( ссылка на этот ответ )

В один из дней 1795 года житель Маастрихта, голландец Хоффман, производил в окрестностях города раскопки и нашёл какие-то гигантские кости. Он зарисовал их и послал рисунки и отдельные зубы в Париж Кювье. Хоффман предполагал, что это остатки скелета кита. Некоторые учёные, видевшие кости, сочли их за останки крокодила. А каноник городского собора утверждал, что это скелет святого, небесного покровителя города Маастрихта. На этом основании каноник отнял у Хоффмана находку и перенёс её, как святыню, в собор. Кювье тогда же высказался против всех этих суждений. Но для окончательного решения, что это такое, он считал нужным изучить весь скелет.
   И до Кювье люди обращали внимание на редкие находки ископаемых животных. Большинство учёных считало их курьёзами, «игрой природы», костями сказочных великанов или древних святых. Кювье не только собрал большое количество таких находок, но и привёл их в систему и описал. Он разработал научный метод, который позволял изучать ископаемых животных с такой же точностью, с какой изучают ныне живущих животных. Его по праву считают основателем палеонтологии — науки об ископаемых останках организмов, живших на Земле в минувшие эпохи и давно вымерших.
   Получив посылку из Маастрихта, Кювье собрал из костей почти полный скелет и убедился, что это кости огромного пресмыкающегося. В хребте животного было более 130 позвонков. Длина ящера достигала пятнадцати метров, из них на голову приходилось более двух метров, а на хвост около семи метров. Его огромная пасть была вооружена длинными острыми зубами, которые позволяли крепко удерживать схваченную добычу. Животное это было названо мозозавром: «заврос» по-гречески — пресмыкающееся, ящер, а первая часть слова — «мозо» должна была напоминать, что находка сделана в бассейне реки Маас (во французском произношении — «Мёз»). Мозозавр этот при жизни был морским хищником, нападавшим на рыб, моллюсков и других животных моря. Кювье обратил внимание на то, что вместе с костями мозозавра было найдено множество остатков морских раковин, ракообразных, окаменелых кораллов, костей и зубов вымерших морских рыб. Все эти животные населяли когда-то воды тёплого моря, которое простиралось на месте современной Голландии.

   Так Кювье решил вопрос, в котором другие учёные были беспомощны. Мозозавра Кювье изучил в начале своей научной деятельности.
   Впоследствии ему не раз приходилось решать такие же загадки природы.
   Жорж Леопольд Кретьен Фредерик Дагобер Кювье родился 23 августа 1769 года в небольшом эльзасском городке Монбельяре. Отец Кювье был старым офицером французской армии и жил на пенсии. Мать целиком отдалась заботам о болезненном и хилом ребёнке, каким был в детстве Кювье. Он поражал ранним умственным развитием. В четыре года он уже читал; мать научила его рисовать, и этим искусством Кювье основательно овладел. Впоследствии многие рисунки, сделанные им, печатались в его книгах и многократно перепечатывались в книгах других авторов. Чтение стало любимым занятием, а потом и страстью Кювье. Его любимой книгой была «Естественная история» Бюффона; иллюстрации из неё Кювье постоянно перерисовывал и раскрашивал.
   В школе он учился блестяще, но слыл далеко не самым благонравным учеником. За шутки над директором гимназии Кювье был «наказан»: он не попал в духовную школу, готовившую священников.
   Пятнадцати лет Кювье поступил в Каролинскую академию в Штутгарте, где избрал факультет камеральных наук. Здесь он изучил право, финансы, гигиену и сельское хозяйство. По-прежнему больше всего его влекло к изучению животных и растений. Почти все его товарищи были старше его. Среди них нашлось несколько молодых людей, интересующихся биологией. Кювье организовал кружок и назвал его «академией». Члены кружка собирались по четвергам, читали, делали сообщения о прочитанном, рассказывали о собственных наблюдениях, определяли собранных насекомых и растения. Президентом этой «академии» был избран Кювье. За удачные доклады он награждал членов кружка вырезанной из картона медалью, на которой изображался бюст Линнея.
   Быстро пролетели четыре года. Кювье окончил университет и вернулся домой. Родители постарели, пенсии отца едва хватало, чтобы сводить концы с концами. Кювье узнал, что граф Эриси ищет для своего сына домашнего учителя. Кювье поехал в Нормандию в 1788 году, совсем накануне французской революции. Там, в уединённом замке, провёл он самые бурные в истории Франции годы.

   Поместье графа Эриси находилось на берегу моря, и Кювье впервые увидел настоящих морских животных, знакомых ему лишь по рисункам. Он вскрывал этих животных и изучал внутреннее строение рыб, крабов, мягкотелых, морских звёзд, червей. Он с изумлением нашёл, что у так называемых низших форм, у которых учёные его времени предполагали простое строение тела, существует и кишечник с железами, и сердце с сосудами, и нервные узлы с отходящими от них нервными стволами. Кювье проник своим скальпелем в новый мир, в котором ещё никто не делал точных и тщательных наблюдений. Результаты исследований он подробно описал в журнале «Зоологический вестник».
   Ещё в детстве мать привила ему любовь к строгому распорядку жизни, научила пользоваться временем, работать планомерно и упорно. Эти черты характера наряду с исключительной памятью, наблюдательностью, любовью к точности сыграли большую роль в его научной деятельности.
   Познакомившись с аббатом Тессье, Кювье по его просьбе прочёл курс ботаники в госпитале, которым тот заведовал. Благодаря связям аббата с парижскими учёными, Кювье завязал отношения с наиболее выдающимися естествоиспытателями.
   Когда в 1794 году сыну графа Эриси пошёл двадцатый год, служба Кювье окончилась, и он опять оказался на распутье. Парижские учёные пригласили Кювье работать в только что организованный Музей естественной истории.
   Весной 1795 года Кювье приехал в Париж. Он очень быстро выдвинулся и в том же году занял в парижском университете — Сорбонне — кафедру анатомии животных. В 1796 году Кювье был назначен членом национального института, в 1800 году занял кафедру естественной истории в College de France. В 1802 году он занял кафедру сравнительной анатомии в Сорбонне.
   Первые научные работы Кювье были посвящены энтомологии. В Париже, изучая богатые коллекции музея, Кювье постепенно убедился, что принятая в науке система Линнея не строго соответствует действительности. Линней разделял животный мир на 6 классов: млекопитающие, птицы, гады, рыбы, насекомые и черви. Кювье же предложил другую систему. Он считал, что в мире животных существует четыре типа строения тела, совсем несходных между собой. Животные одного типа одеты твёрдым панцирем, и тело их состоит из многих члеников; таковы раки, насекомые, многоножки, некоторые черви. Кювье назвал таких животных «членистыми». В другом типе мягкое тело животного заключено в твёрдую раковину и никаких признаков членистости у них нет: улитки, осьминоги, устрицы — этих животных Кювье назвал «мягкотелыми». Животные третьего типа обладают расчленённым внутренним костным скелетом: «позвоночные» животные. Животные четвёртого типа построены так же, как морская звезда, т. е. части их тела расположены по радиусам, расходящимся из одного центра. Этих животных Кювье назвал «лучистыми».

   Внутри каждого типа Кювье выделил классы; некоторые из них совпадали с классами Линнея. Так, например, тип позвоночных был разделён на классы млекопитающих, птиц, гадов и рыб. Система Кювье гораздо лучше выражала действительные соотношения между группами животных, чем система Линнея. Вскоре она вошла во всеобщее употребление у зоологов. Свою систему Кювье положил в основу капитального трёхтомного труда «Царство животных», где было подробно описано анатомическое строение животных.
   Глубокие познания в анатомии животных позволили Кювье восстанавливать облик вымерших существ по их сохранившимся костям. Кювье убедился, что все органы животного тесно связаны друг с другом, что каждый орган нужен для жизни всего организма. Каждое животное приспособлено к той среде, в которой оно живёт, находит корм, укрывается от врагов, заботится о потомстве. Если это животное травоядное, его передние зубы приспособлены срывать траву, а коренные — растирать её. Массивные зубы, растирающие траву, требуют крупных и мощных челюстей и соответствующей жевательной мускулатуры. Стало быть, у такого животного должна быть тяжёлая, большая голова, а так как у него нет ни острых когтей, ни длинных клыков, чтобы отбиться от хищника, то оно отбивается рогами. Чтобы поддерживать тяжёлую голову и рога, нужны сильная шея и большие шейные позвонки с длинными отростками, к которым прикреплены мышцы. Чтобы переваривать большое количество малопитательной травы, требуется объёмистый желудок и длинный кишечник, а следовательно, нужен большой живот, нужны широкие рёбра. Так вырисовывается облик травоядного млекопитающего.
   «Организм, — говорил Кювье, — есть связное целое. Отдельные части его нельзя изменить, не вызывая изменения других». Эту постоянную связь органов между собой Кювье назвал «соотношением частей организма».
   Насколько Кювье был проникнут сознанием постоянной связанности частей тела животного, видно из следующего анекдота. Один из его учеников захотел пошутить над ним. Он нарядился в шкуру дикого барана, ночью вошёл в спальню Кювье и, став возле его кровати, диким голосом закричал: «Кювье, Кювье, я тебя съем!» Великий натуралист проснулся, протянул руку, нащупал рога и, рассмотрев в полутьме копыта, спокойно ответил: «Копыта, рога — травоядное; ты меня не можешь съесть!»
   Изучая ископаемые остатки, Кювье восстановил облик многих вымерших животных, живших миллионы лет назад. Он доказал, что когда-то на месте Европы было тёплое море, по которому плавали огромные хищники — ихтиозавры, плезиозавры и др. Они, так же как мозозавр, были ящерами и приспособились к жизни в море.
   Кювье доказал, что в те времена и в воздухе господствовали пресмыкающиеся, а птиц ещё не было. У некоторых крылатых ящеров размах крыльев достигал семи метров, другие были величиной с воробья. На крыле летающего ящера не было перьев; оно представляло собой кожистую перепонку, натянутую между туловищем животного и очень удлинённым мизинцем его передней конечности. Кювье назвал этих ископаемых драконов птеродактилями, т. е. «пальцекрылыми». Птеродактили тоже были хищниками и охотились на рыб. Они ловили их пастью, вооружённой загнутыми назад зубами.

   Изучив другие ископаемые остатки, Кювье убедился, что в прошлом была эпоха со своеобразным животным миром, в которой не существовало ни одно современное животное. Все жившие тогда животные вымерли. Эта ископаемая фауна сухопутных животных, главным образом млекопитающих, была обнаружена около Парижа в гипсовых каменоломнях и в пластах известняковой горной породы — мергеля.
   Кювье открыл и описал около сорока вымерших пород крупных млекопитающих — толстокожих и жвачных. Некоторые из них отдалённо напоминали современных носорогов, тапиров, кабанов; другие были совсем своеобразными. Но среди них не было живущих в наше время жвачных — ни быков, ни верблюдов, ни оленей, ни жирафов.
   Продолжая свои исследования, Кювье обнаружил, что ископаемые фауны находятся в пластах земной коры в известном порядке. В более древних пластах содержатся остатки морских рыб и пресмыкающихся; в более поздних отложениях мела — другие пресмыкающиеся и первые мелкие и редкие млекопитающие с очень примитивным строением черепа; в ещё более поздних — фауна древних млекопитающих и птиц. Наконец, в отложениях, предшествующих современным, Кювье обнаружил останки мамонта, пещерного медведя, шерстистого носорога. Таким образом, по ископаемым остаткам можно определять относительную последовательность и древность пластов, а по напластованиям — относительную древность вымерших фаун. Это открытие легло в основу исторической геологии и стратиграфии — учения о последовательности напластований, слагающих земную кору.
   Куда же исчезали фауны, которые мы теперь находим в виде ископаемых остатков, и откуда возникали новые, приходившие им на смену? Современная наука объясняет это эволюционным развитием животного мира. Открытые Кювье факты легли в основу такого объяснения. Но сам Кювье не видел громадного значения сделанных им открытий. Он прочно стоял на старой точке зрения о постоянстве видов. Кювье считал, что среди ископаемых нет переходных форм животных организмов. (Такие формы были открыты лишь через много лет после смерти Кювье.) Он указывал на внезапное исчезновение фаун и на отсутствие связи между ними. Для объяснения последовательной смены ископаемых животных Кювье придумал особую теорию «переворотов», или «катастроф», в истории Земли.
   Он объяснял эти катастрофы так: на сушу надвигалось море и поглощало всё живое, затем море отступало, морское дно становилось сушей, которая и заселялась новыми животными. Откуда они брались? Кювье на это не давал ясного ответа. Он говорил, что новые животные могли переселиться из далёких мест, где они жили раньше. По существу, это была реакционная теория, пытавшаяся примирить научные открытия с религиозным учением о неизменяемости и постоянстве видов. Теория «катастроф» ещё долго господствовала в науке, и только эволюционное учение Дарвина опровергло её.
   Кювье проложил в биологии новые пути исследования и создал новые области знания — палеонтологию и сравнительную анатомию животных. Тем самым было подготовлено торжество эволюционного учения. Оно появилось в науке уже после смерти Кювье и вопреки его мировоззрению. У Кювье, как у всякого человека, были ошибки. Но едва ли будет справедливым из-за ошибок забывать о его величайших заслугах. Если труды Кювье оценивать беспристрастно, то следует признать их огромное научное значение: он продвинул далеко вперёд несколько обширных областей науки о жизни.

   Заслуги учёного были отмечены на родине: его избрали членом французской академии, при Луи-Филиппе он стал пэром Франции.
   Кювье умер 13 мая 1832 года.

 

 

Страниц: 1 ... 15 16 17 18 19 20 | ВверхПечать