Максимум Online сегодня: 569 человек.
Максимум Online за все время: 4395 человек.
(рекорд посещаемости был 29 12 2022, 01:22:53)


Всего на сайте: 24816 статей в более чем 1761 темах,
а также 357908 участников.


Добро пожаловать, Гость. Пожалуйста, войдите или зарегистрируйтесь.
Вам не пришло письмо с кодом активации?

 

Сегодня: 20 04 2024, 00:59:11

Мы АКТИВИСТЫ И ПОСЕТИТЕЛИ ЦЕНТРА "АДОНАИ", кому помогли решить свои проблемы и кто теперь готов помочь другим, открываем этот сайт, чтобы все желающие, кто знает работу Центра "Адонаи" и его лидера Константина Адонаи, кто может отдать свой ГОЛОС В ПОДДЕРЖКУ Центра, могли здесь рассказать о том, что знают; пообщаться со всеми, кого интересуют вопросы эзотерики, духовных практик, биоэнергетики и, непосредственно "АДОНАИ" или иных центров, салонов или специалистов, практикующим по данным направлениям.

Страниц: 1 2 3 4 ... 20 | Вниз

Ответ #5: 01 05 2010, 17:23:17 ( ссылка на этот ответ )

Английский физик Джозеф Томсон вошёл в историю науки как человек, открывший электрон. Однажды он сказал: «Открытия обязаны остроте и силе наблюдательности, интуиции, непоколебимому энтузиазму до окончательного разрешения всех противоречий, сопутствующих пионерской работе».
   Джозеф Джон Томсон родился 18 декабря 1856 года в Манчестере. Здесь, в Манчестере, он окончил Оуэнс-колледж, а в 1876–1880 годах учился в Кембриджском университете в знаменитом колледже святой Троицы (Тринити-колледж). В январе 1880 года Томсон успешно выдержал заключительные экзамены и начал работать в Кавендишской лаборатории.
   Первая его статья, опубликованная в 1880 году, была посвящена электромагнитной теории света. В следующем году появились две работы, из которых одна положила начало электромагнитной теории массы. Статья называлась «Об электрических и магнитных эффектах, производимых движением наэлектризованных тел». В этой статье выражена та мысль, что «эфир вне заряженного тела является носителем всей массы, импульса и энергии». С увеличением скорости изменяется характер поля, в силу чего вся эта «полевая» масса возрастает, оставаясь всё время пропорциональной энергии.
   Томсон был одержим экспериментальной физикой в лучшем смысле этого слова. Неутомимый в работе, он настолько привык самостоятельно добиваться поставленной цели, что злые языки поговаривали о его полном пренебрежении к авторитетам. Уверяли, что он предпочитал самостоятельно продумывать любые незнакомые ему вопросы научного характера, вместо того чтобы обратиться к книгам и готовым теориям. Впрочем, это явное преувеличение…
   Научные успехи Томсона были высоко оценены директором лаборатории Кавендиша Рэлеем. Уходя в 1884 году с поста директора, он, не колеблясь, рекомендовал своим преемником Томсона. Для самого Джозефа его назначение было неожиданностью.
   Известно, что, когда один из американских физиков, стажировавшихся в Кавендишской лаборатории, узнал об этом назначении, он тут же собрал свои пожитки. «Бессмысленно работать под началом профессора, который всего на два года старше тебя…» — заявил он, отплывая на родину. Что ж, у него впереди было много времени, чтобы пожалеть о своей поспешности.

   Для такого выбора у старого директора лаборатории были немалые основания. Все, кто близко знал Томсона, единодушно отмечали его неизменную благожелательность и приятную манеру общения, сочетавшуюся с принципиальностью. Позже ученики вспоминали, что их руководитель любил повторять слова Максвелла о том, что никогда не следует отговаривать человека поставить задуманный им эксперимент. Даже если он не найдёт того, что ищет, он может открыть нечто иное и вынести для себя больше пользы, чем из тысячи дискуссий.
   Так уживались в этом человеке столь разные свойства, как самостоятельность собственных суждений и глубокое уважение к мнению ученика, сотрудника или коллеги. И может быть, именно эти качества обеспечили ему успех в должности руководителя «Кавендиша».
   На новый пост Томсон пришёл, имея опубликованные работы, убеждение в единстве материального мира и множество планов на будущее. И его первые успехи способствовали авторитету Кавендишской лаборатории. Скоро здесь собралась группа молодых людей, приехавших из самых разных стран. Все они одинаково горели энтузиазмом и готовы были на любые жертвы ради науки. Образовалась школа, настоящий научный коллектив людей, объединённых общностью целей и методов, с мировым авторитетом во главе.
   С 1884 по 1919 год, когда его сменил на посту директора лаборатории Резерфорд, Томсон руководил лабораторией Кавендиша. За это время она превратилась в крупный центр мировой физики, в международную школу физиков. Здесь начали свой научный путь Резерфорд, Бор, Ланжевен и многие другие, в том числе и русские учёные.
   Завершая в конце жизни книгу своих воспоминаний, Томсон перечисляет среди своих бывших докторантов 27 членов Королевского общества, 80 профессоров, успешно работающих в тринадцати странах. Результат поистине блестящий.
   Программа исследований Томсона была широкой: вопросы прохождения электрического тока через газы, электронная теория металлов, исследование природы различного рода лучей…

   Взявшись за исследование катодных лучей, Томсон прежде всего решил проверить, достаточно ли тщательно были поставлены опыты его предшественниками, добившимися отклонения лучей электрическими полями. Он задумывает повторный эксперимент, конструирует для него специальную аппаратуру, следит сам за тщательностью исполнения заказа, и ожидаемый результат налицо. В трубке, сконструированной Томсоном, катодные лучи послушно притягивались к положительно заряженной пластинке и явно отталкивались от отрицательной, то есть вели себя так, как и полагалось потоку быстролетящих крошечных корпускул, заряженных отрицательным электричеством. Превосходный результат! Он мог, безусловно, положить конец всем спорам о природе катодных лучей, но Томсон не считал своё исследование законченным. Определив природу лучей качественно, он хотел дать точное количественное определение и составляющим их корпускулам.
   Окрылённый первым успехом, он сконструировал новую трубку: катод, ускоряющие электроды в виде колечек и пластинки, на которые можно было подавать отклоняющее напряжение. На стенку, противоположную катоду, он нанёс тонкий слой вещества, способного светиться под ударами налетающих частиц. Получился предок электронно-лучевых трубок, так хорошо знакомых нам в век телевизоров и радиолокаторов.
   Цель опыта Томсона заключалась в том, чтобы отклонить пучок корпускул электрическим полем и компенсировать это отклонение полем магнитным. Выводы, к которым он пришёл в результате эксперимента, были поразительны. Во-первых, оказалось, что частицы летят в трубке с огромными скоростями, близкими к световым. А во-вторых, электрический заряд, приходившийся на единицу массы корпускул, был фантастически большим. Что же это были за частицы: неизвестные атомы, несущие на себе огромные электрические заряды, или крохотные частицы с ничтожной массой, но зато и с меньшим зарядом?
   Далее он обнаружил, что отношение удельного заряда к единице массы есть величина постоянная, не зависящая ни от скорости частиц, ни от материала катода, ни от природы газа, в котором происходит разряд. Такая независимость настораживала. Похоже, что корпускулы были какими-то универсальными частицами вещества, составными частями атомов…
   При одной мысли об этом исследователю прошлого века должно было становиться не по себе. Ведь само слово «атом» означало «неделимый». Тысячелетиями, прошедшими со времени Демокрита, атомы являлись символами предела делимости, символами дискретности вещества. И вдруг… Вдруг оказывается, что и у них есть составные части?
   Согласитесь, что тут было от чего почувствовать растерянность. Правда, к ужасу святотатства примешивался в немалой степени и восторг от предвкушения великого открытия…

   Томсон принялся за расчёты. Прежде всего, следовало определить параметры таинственных корпускул, и тогда, может быть, удастся решить, что они собой представляют.
   Тонкий почерк учёного покрывает листы бумаги бесконечными цифрами. И вот они, первые результаты расчётов: сомнений нет, неизвестные частицы — не что иное, как мельчайшие электрические заряды, неделимые атомы электричества, или электроны. Они были известны теоретически и даже получили название, но только ему удалось открыть и тем самым окончательно подтвердить их существование экспериментально.
   И это сделал он — упрямый английский физик-экспериментатор профессор Джозеф Джон Томсон, которого ученики и коллеги за глаза звали просто Джи-Джи.
   29 апреля 1897 года в помещении, где уже более двухсот лет происходили заседания Лондонского королевского общества, назначен его доклад. Большинство собравшихся хорошо знакомы с историей вопроса. Многие сами пытались решить проблемы природы катодных лучей. Имя докладчика обещало интересное сообщение.
   И вот Томсон на трибуне. Он высокого роста, худощавый, в очках с металлической оправой. Говорит уверенно, громко. Ассистенты докладчика тут же, на глазах у присутствующих, готовят демонстрационный опыт. Действительно, всё, о чём говорил высокий джентльмен в очках, имело место. Катодные лучи в трубке послушно отклонялись и притягивались магнитным и электрическим полями. Причём отклонялись и притягивались именно так, как должны были, если предположить, что они состояли из мельчайших отрицательно заряженных частиц…
   Слушатели были в восторге. Они не раз прерывали доклад аплодисментами. Финал же превзошёл все ожидания. Такого триумфа этот старинный зал, пожалуй, ещё не видел. Почтенные члены Королевского общества вскакивали с мест, спешили к демонстрационному столу, толпились, размахивая руками, и кричали…

   Восторг присутствующих объяснялся вовсе не тем, что коллега Дж. Дж. Томсон столь убедительно раскрыл истинную природу катодных лучей. Дело обстояло гораздо серьёзнее. Атомы, наипервейшие кирпичики материи, перестали быть элементарными круглыми зёрнами, непроницаемыми и неделимыми частицами без всякого внутреннего строения… Если из них могли вылетать отрицательно заряженные корпускулы, значит, и представлять собой атомы должны были какую-то сложную систему, состоящую из чего-то заряженного положительным электричеством и из отрицательно заряженных корпускул — электронов.
   Название «электрон», некогда предложенное Стонеем для обозначения величины наименьшего электрического заряда, стало именем неделимого «атома электричества».
   Теперь стали видны и дальнейшие самые необходимые направления будущих поисков. Прежде всего, конечно, необходимо было определить точно заряд и массу одного электрона, что позволило бы уточнить массы атомов всех элементов, рассчитать массы молекул, дать рекомендации к правильному составлению реакций… Да что говорить, знание точного значения заряда электрона было необходимо как воздух, и потому за опыты по его определению тут же взялись многие физики.
   В 1904 году Томсон обнародовал свою новую модель атома. Она представляла собой также равномерно заряженную положительным электричеством сферу, внутри которой вращались отрицательно заряженные корпускулы, число и расположение которых зависело от природы атома. Учёному не удалось решить общую задачу устойчивого расположения корпускул внутри сферы, и он остановился на частном случае, когда корпускулы лежат в одной плоскости, проходящей через центр сферы. В каждом кольце корпускулы совершали довольно сложные движения, которые автор гипотезы связывал со спектрами. А распределение корпускул по кольцам-оболочкам соответствовало вертикальным столбцам таблицы Менделеева.
   Рассказывают, что однажды журналисты попросили Джи-Джи пояснить наглядно, каким он предполагает строение «своего атома».
   — О, это очень просто, — невозмутимо ответил профессор, — скорее всего, это нечто вроде пудинга с изюмом…

   Так и вошёл в историю науки атом Томсона — положительно заряженным «пудингом», нафаршированным отрицательными «изюминками» — электронами.
   Томсон и сам прекрасно понимал сложность структуры «пудинга с изюмом». Учёный подошёл совсем близко и к выводу, что характер распределения электронов в атоме определяет его место в периодической системе элементов, но только подошёл. Окончательный вывод был ещё впереди. Многое в предложенной им модели было ещё необъяснимо. Никто, например, не понимал, что представляет собой положительно заряженная масса атома и сколько электронов должно содержаться в атомах различных элементов.
   Томсон научил физиков управлять электронами, и в этом его основная заслуга. Развитие метода Томсона составляет основу электронной оптики, электронных ламп, современных ускорителей заряженных частиц. В 1906 году Томсону за его исследование прохождения электричества через газы была присуждена Нобелевская премия по физике.
   Томсон разработал и методы изучения положительно заряженных частиц. Вышедшая в 1913 году его монография «Лучи положительного электричества» положила начало масс-спектроскопии. Развивая методику Томсона, его ученик Астон построил первый масс-спектрометр и разработал метод анализа и разделения изотопов. В лаборатории Томсона начались первые измерения элементарного заряда из наблюдения движения заряженного облака в электрическом поле. Этот метод был в дальнейшем усовершенствован Милликеном и привёл к его ставшим классическими измерениям заряда электрона.
   В лаборатории Кавендиша начала свою жизнь и знаменитая камера Вильсона, построенная учеником и сотрудником Томсона Вильсоном в 1911 году.
   Таким образом, роль Томсона и его учеников в становлении и развитии атомной и ядерной физики очень велика. Но Томсон до конца своей жизни оставался сторонником эфира, разрабатывал модели движения в эфире, результатом которых, по его мнению, были наблюдаемые явления. Так, отклонение катодного пучка в магнитном поле он интерпретировал как прецессию гироскопа, наделяя совокупность электрического и магнитного полей вращательным моментом.

   Умер Томсон 30 августа 1940 года, в трудное для Англии время, когда над ней нависла угроза вторжения гитлеровцев.

 

 

Ответ #6: 01 05 2010, 19:22:27 ( ссылка на этот ответ )

Фридрих Генрих Александр фон Гумбольдт родился 14 сентября 1769 года в Берлине. Детство вместе со старшим братом Вильгельмом он провёл в Тегеле. Условия, при которых они росли и воспитывались, были как нельзя более благоприятны для развития. Оба мальчика получили домашнее воспитание.
   Александру наука давалась туго. Память у него была хорошая, но быстротой соображения он не отличался и далеко отставал в этом отношении от Вильгельма, который легко и быстро схватывал всякий предмет.
   В 1783 году братья вместе со своим воспитателем переселились в Берлин. Требовалось расширить их образование, для чего были приглашены различные учёные. Частные лекции и жизнь в Берлине продолжались до 1787 года, когда оба брата отправились во Франкфурт-на-Одере для поступления в тамошний университет. Вильгельм поступил на юридический факультет, а Александр — на камеральный.
   Александр оставался во Франкфуртском университете только год. Затем около года провёл в Берлине, изучая технологию, греческий язык и ботанику. Занятия Александра имели энциклопедический характер. Классическая литература, история, естествознание, математика интересовали его в одинаковой степени. В Гёттингенском университете Гумбольдт оставался до 1790 года. Потом начались его самостоятельные занятия.

   В марте 1790 года он предпринял путешествие вместе с Форстером из Майнца по Рейну в Голландию, оттуда — в Англию и Францию.
   Желание поближе познакомиться с геологией и слава Фрейбергской горной академии увлекли его во Фрейберг, куда он отправился в 1791 году. Здесь читал геологию знаменитый Вернер, глава школы нептунистов.
   После того как он оставил Фрейберг, окончились учебные годы Гумбольдта, так как с 1792 года началась его служебная деятельность. В это время ему было 23 года. Способности Александра теперь обнаружились в полном блеске. Он обладал обширными и разносторонними знаниями, владел несколькими языками, напечатал ряд самостоятельных исследований по геологии, ботанике и физиологии и обдумывал планы будущих путешествий.
   Весной 1792 года Гумбольдт получил место асессора департамента горных дел в Берлине, а в августе был назначен обер-бергмейстером (начальником горного дела) в Ансбахе и Байрейте, с жалованьем в 400 талеров.
   Занятия, связанные с этой должностью, вполне совпадали с желаниями Гумбольдта, глубоко интересовавшегося минералогией и геологией. Постоянные разъезды, которых требовала его должность, имели значение как подготовка к будущим путешествиям.
   Крупнейшей работой этого периода были обширные исследования с электричеством над животными, предпринятые Гумбольдтом после ознакомления его с открытием Гальвани. Результатом этих исследований явилось двухтомное сочинение «Опыты над раздражёнными мускульными и нервными волокнами», напечатанное только в 1797–1799 годах. Часть этих опытов была им произведена над собственным телом при содействии доктора Шаллерна: спина Гумбольдта служила объектом исследования, на ней специально делались раны и затем они гальванизировались различными способами. Шаллерн наблюдал за результатами, так как Гумбольдт, понятно, мог только ощущать их.

   Зиму 1797/1798 года Александр провёл в Зальцбурге, занимаясь геологическими и метеорологическими исследованиями.
   В 1799 году Гумбольдт отправляется в длительное путешествие по Южной Америке и Мексике. Только 3 августа 1804 года, после почти пятилетнего пребывания в Америке, Гумбольдт высадился в Бордо. Результаты путешествия были впечатляющи. До Гумбольдта только один пункт внутри Южной Америки — Кито — был точно определён астрономически; геологическое строение её было вовсе неизвестно.
   Гумбольдт определил широту и долготу многих пунктов, произвёл около 700 гипсометрических измерений (измерение высот), то есть создал географию и орографию местности, исследовал её геологию, собрал данные о климате страны и уяснил его отличительные черты. Удалось ему собрать и огромные ботанические, зоологические коллекции — одних растений около четырёх тысяч видов, в том числе тысячу восемьсот новых для науки.
   Было доказано соединение систем Амазонки и Ориноко, исправлены и пополнены карты течения обеих рек; определено направление некоторых горных цепей и открыты новые, дотоле неизвестные, уяснено распределение гор и низменностей; нанесено на карту морское течение вдоль западных берегов Америки, названное Гумбольдтовым. Им не оставлены без внимания и этнография, археология, история, языки, политическое состояние стран: по всем этим предметам собран богатейший материал, разработанный впоследствии частью самим Гумбольдтом, частью его сотрудниками.
   Гумбольдт решил остаться в Париже для изучения и издания собранных им материалов. Издание «Американского путешествия» потребовало многих лет и сотрудничества многих учёных. Сам Гумбольдт взял на себя главным образом общие выводы, сотрудники обрабатывали фактический материал.
   Первый том вышел в 1807 году, последний — в 1833 году. Всё издание состоит из 30 томов, содержит 1425 таблиц.

   В 1805 году — Гумбольдт отправился в Италию, к брату. В 1806–1807 годах он жил в Берлине, а затем попросил прусского короля позволить ему жить в Париже и получил разрешение. После этого он прожил во Франции почти двадцать лет (1809–1827), уезжая из неё лишь изредка и ненадолго.
   Пребывание в «столице мира» было посвящено почти исключительно работе. Гумбольдт вставал около 7 часов утра, в 8 отправлялся к своему другу Ф. Араго или в институт, где работал до 11–12 часов, затем завтракал на скорую руку и снова принимался за работу. Около семи вечера учёный обедал, после обеда посещал друзей и салоны. Лишь около полуночи возвращался домой и опять работал до двух, а то и до полтретьего. Таким образом, для сна оставалось 4–5 часов в сутки. «Периодический сон считается устарелым предрассудком в семье Гумбольдтов», — говаривал он, шутя. Такой деятельный образ жизни он вёл до самой смерти и, что всего удивительнее, оставался всегда здоровым и сильным физически и умственно.
   Этот период его деятельности можно назвать периодом открытий, последующие годы жизни были посвящены уже главным образом продолжению и развитию ранее сделанных исследований.
   Работы Гумбольдта представляют столь обширную энциклопедию естествознания, все они связаны в одно целое идеей физического мироописания.
   Ещё во время службы обер-бергмейстером Гумбольдт начал исследования химического состава воздуха. Позднее они были продолжены вместе с Гей-Люссаком и привели к следующим результатам: состав атмосферы вообще остаётся постоянным; количество кислорода в воздухе равняется двадцати одному проценту; воздух не содержит заметной примеси водорода. Это было первое точное исследование атмосферы, и позднейшие работы подтвердили в существенных чертах эти данные.
   Целый ряд исследований Гумбольдт посвятил температуре воздуха, но, для того чтобы открыть причины различия температуры, необходимо было иметь картину распределения тепла на земном шаре и метод для дальнейшей разработки этой картины. Эту двойную задачу исполнил Гумбольдт, установив так называемые изотермы — линии, связывающие места с одинаковой средней температурой в течение известного периода времени. Работа об изотермах послужила основанием сравнительной климатологии, и Гумбольдт может считаться творцом этой сложнейшей и труднейшей отрасли естествознания.

   Распределение растений на земном шаре находится в такой строгой зависимости от распределения тепла и других климатических условий, что, только имея картину климатов, можно подумать об установлении растительных областей. До Гумбольдта ботанической географии как науки не существовало. Работы Гумбольдта создали эту науку, определили содержание уже существовавшего термина.
   В основу ботанической географии Гумбольдт положил климатический принцип. Он указал аналогию между постепенным изменением растительности от экватора к полюсу и от подошвы гор к вершине. Учёный охарактеризовал растительные пояса, чередующиеся по мере подъёма на вершину горы или при переходе от экватора в северные широты, сделал первую попытку разделения земного шара на ботанические области. Гумбольдт открыл относительные изменения в составе флоры, преобладании тех или других растений параллельно климатическим условиям.
   Принцип, установленный Гумбольдтом, остаётся руководящим принципом этой науки, и, хотя сочинения его устарели, за ним навсегда останется слава основателя ботанической географии.
   Несколько важных открытий он совершил, проводя исследования земного магнетизма. Гумбольдт первый фактически доказал, что напряжённость земного магнетизма изменяется в различных широтах, уменьшаясь от полюсов к экватору. Ему же принадлежит открытие внезапных возмущений магнитной стрелки («магнитные бури»), происходящих, как показали позднейшие исследования, одновременно в различных точках земного шара под влиянием неразгаданных ещё причин. Далее, им было открыто вторичное отклонение магнитной стрелки в течение суток. Стрелка не остаётся неподвижной, а перемещается сначала в одном направлении, потом в противоположном. Гумбольдт показал, что это явление повторяется дважды в течение суток. Он же показал, что магнитный экватор (линия, соединяющая пункты, где магнитная стрелка стоит горизонтально) не совпадает с астрономическим. В работе, предпринятой вместе с Био, он пытался определить магнитный экватор, но недостаток данных заставил авторов предположить здесь гораздо большую правильность, чем существующая в действительности.
   В начале 19-го столетия геология ещё только начинала своё становление. Явившись в начале своей деятельности сторонником Вернера, Гумбольдт впоследствии сделался одним из главных двигателей плутонической теории. Гумбольдт оказал содействие её торжеству, главным образом, своими исследованиями о вулканах.
   Многочисленные и разнообразные научные работы не мешали Гумбольдту интересоваться политикой, придворными новостями и даже, попросту говоря, сплетнями и пустячками, известными под названием «новостей дня». В салонах он блистал не только учёностью, красноречием и остроумием, но и знанием всяких анекдотов и мелочей, занимавших общество.

   Прусский король Фридрих Вильгельм III был лично расположен к Гумбольдту, любил его беседу и дорожил его обществом. В 1826 году он пригласил своего учёного друга переселиться в Берлин.
   В первый же год своей жизни в Берлине он прочёл ряд публичных лекций «о физическом мироописании». Лекции привлекли множество слушателей. Не только берлинские жители стекались на них толпами, но и из других городов Европы приезжали любопытные послушать Гумбольдта. Король и его семейство, важнейшие сановники, придворные дамы, профессора и литераторы присутствовали тут вместе с бесчисленной публикой из самых разнообразных слоёв общества.
   Чтения начались 3 ноября 1827 года и кончились 26 апреля 1828 года. По окончании лекций особо назначенный комитет поднёс Гумбольдту медаль с изображением солнца и надписью «Озаряющий весь мир яркими лучами».
   Русский император Николай I предложил учёному предпринять путешествие на Восток «в интересе науки и страны». Такое предложение как нельзя более соответствовало желаниям Гумбольдта, и он, разумеется, принял его, попросив только отсрочки на год для приведения к концу некоторых начатых работ и подготовки к путешествию.
   12 апреля 1829 года Гумбольдт оставил Берлин и 1 мая прибыл в Петербург. Отсюда путешественники отправились через Москву и Владимир в Нижний Новгород. Из Нижнего учёный поплыл по Волге в Казань, оттуда — в Пермь и Екатеринбург. Здесь, собственно, начиналось настоящее путешествие. В течение нескольких недель путешественники двигались по Нижнему и Среднему Уралу, исследовали его геологию. Затем Гумбольдт отправился в Сибирь.
   Последним пунктом путешествия стала Астрахань. Гумбольдт «не хотел умирать, не повидав Каспийского моря».

   Из Астрахани путешественники совершили небольшую поездку по Каспийскому морю; затем отправились обратно в Петербург, куда прибыли 13 ноября 1829 года.
   Благодаря удобствам, которыми пользовались путешественники, и их научному рвению, эта экспедиция дала богатые результаты. Два года учёный обрабатывал результаты экспедиции в Париже.
   С 1832 года Гумбольдт жил главным образом в Берлине, навещая, однако, по временам «столицу мира» и другие города Европы.
   В 1842 году он был назначен канцлером ордена «Pour le Merite», учреждённого ещё Фридрихом II для награды за военные заслуги. Фридрих Вильгельм IV придал ему гражданский класс. Орден должен был выдаваться величайшим представителям науки, искусства и литературы в Германии и Европе.
   Гумбольдт получил бесчисленное количество наград и отличий, сыпавшихся на него со стороны правительств и учёных учреждений. Имя его увековечено на географических картах, в учебниках зоологии и ботаники и т. д. Многие реки, горы носят его имя.
   Вряд ли можно назвать другого учёного, пользовавшегося такой популярностью. Он был как бы солнцем учёного мира, к которому тянулись все крупные и мелкие деятели науки. К нему ездили на поклон, как благочестивые католики к папе. Нарочно заезжали в Берлин посмотреть Александра Гумбольдта — «поцеловать папскую туфлю».

   Среди публики его слава поддерживалась общедоступными сочинениями. Эта сторона его деятельности увенчалась, наконец, давно задуманным «Космосом». «Космос» представляет свод знаний первой половины 19-го столетия и, что всего драгоценнее, свод, составленный специалистом, потому что Гумбольдт был специалистом во всех областях, кроме разве высшей математики. Это почти невероятно, но это так.
   Но только в 1845 году вышел, наконец, первый том «Космоса». Пятый не был закончен, и работа над ним оборвалась вместе с жизнью.
   Необыкновенная деятельность и умственное напряжение, казалось, должны бы были ослабить его физические и духовные силы. Но природа сделала для него исключение. В последние годы жизни, приближаясь к девяностолетнему возрасту, он вёл такой же деятельный образ жизни, как когда-то в Париже. Гумбольдт умер 6 мая 1859 года.

 

 

Ответ #7: 01 05 2010, 21:42:37 ( ссылка на этот ответ )

Архимед родился в 287 году до нашей эры в греческом городе Сиракузы, где и прожил почти всю свою жизнь. Отцом его был Фидий, придворный астроном правителя города Гиерона. Учился Архимед, как и многие другие древнегреческие учёные, в Александрии, где правители Египта Птолемеи собрали лучших греческих учёных и мыслителей, а также основали знаменитую, самую большую в мире библиотеку.

   После учёбы в Александрии Архимед вновь вернулся в Сиракузы и унаследовал должность своего отца.
   В теоретическом отношении труд этого великого учёного был ослепляюще многогранным. Основные работы Архимеда касались различных практических приложений математики (геометрии), физики, гидростатики и механики. В сочинении «Параболы квадратуры» Архимед обосновал метод расчёта площади параболического сегмента, причём сделал это за две тысячи лет до открытия интегрального исчисления. В труде «Об измерении круга» Архимед впервые вычислил число «пи» — отношение длины окружности к диаметру — и доказал, что оно одинаково для любого круга. Мы до сих пор пользуемся придуманной Архимедом системой наименования целых чисел.
   Математический метод Архимеда, связанный с математическими работами пифагорейцев и с завершившей их работой Эвклида, а также с открытиями современников Архимеда, подводил к познанию материального пространства, окружающего нас, к познанию теоретической формы предметов, находящихся в этом пространстве, формы совершенной, геометрической формы, к которой предметы более или менее приближаются и законы которой необходимо знать, если мы хотим воздействовать на материальный мир.
   Но Архимед знал также, что предметы имеют не только форму и измерение: они движутся, или могут двигаться, или остаются неподвижными под действием определённых сил, которые двигают предметы вперёд или приводят в равновесие. Великий сиракузец изучал эти силы, изобретая новую отрасль математики, в которой материальные тела, приведённые к их геометрической форме, сохраняют в то же время свою тяжесть. Эта геометрия веса и есть рациональная механика, это статика, а также гидростатика, первый закон которой открыл Архимед (закон, носящий имя Архимеда), согласно которому на тело, погружённое в жидкость, действует сила, равная весу вытесненной им жидкости.
   Однажды приподнявши ногу в воде, Архимед констатировал с удивлением, что в воде нога стала легче. «Эврика! Нашёл!» — воскликнул он, выходя из своей ванны. Анекдот занятный, но, переданный таким образом, он неточен. Знаменитое «Эврика!» было произнесено не в связи с открытием закона Архимеда, как это часто говорят, но по поводу закона удельного веса металлов — открытия, которое также принадлежит сиракузскому учёному и обстоятельные детали которого находим у Витрувия.
   Рассказывают, что однажды к Архимеду обратился Гиерон, правитель Сиракуз. Он приказал проверить, соответствует ли вес золотой короны весу отпущенного на неё золота. Для этого Архимед сделал два слитка: один из золота, другой из серебра, каждый такого же веса, что и корона. Затем поочерёдно положил их в сосуд с водой, отметил, на сколько поднялся её уровень. Опустив в сосуд корону, Архимед установил, что её объём превышает объём слитка. Так и была доказана недобросовестность мастера.

   Любопытен отзыв Цицерона, великого оратора древности, увидевшего «архимедову сферу» — модель, показывающую движение небесных светил вокруг Земли: «Этот сицилиец обладал гением, которого, казалось бы, человеческая природа не может достигнуть».
   И, наконец, Архимед был не только великим учёным, он был, кроме того, человеком, страстно увлечённым механикой. Он проверяет и создаёт теорию пяти механизмов, известных в его время и именуемых «простые механизмы». Это — рычаг («Дайте мне точку опоры, — говорил Архимед, — и я сдвину Землю»), клин, блок, бесконечный винт и лебёдка. Именно Архимеду часто приписывают изобретение бесконечного винта, но возможно, что он лишь усовершенствовал гидравлический винт, который служил египтянам при осушении болот.
   Впоследствии эти механизмы широко применялись в разных странах мира. Интересно, что усовершенствованный вариант водоподъёмной машины можно было встретить в начале XX века в монастыре, находившемся на Валааме, одном из северных российских островов. Сегодня же архимедов винт используется, к примеру, в обыкновенной мясорубке.
   Изобретение бесконечного винта привело его к другому важному изобретению, пусть даже оно и стало обычным, — к изобретению болта, сконструированного из винта и гайки.
   Тем своим согражданам, которые сочли бы ничтожными подобные изобретения, Архимед представил решительное доказательство противного в тот день, когда он, хитроумно приладив рычаг, винт и лебёдку, нашёл средство, к удивлению зевак, спустить на воду тяжёлую галеру, севшую на мель, со всем её экипажем и грузом.
   Ещё более убедительное доказательство он дал в 212 году до нашей эры. При обороне Сиракуз от римлян во время второй Пунической войны Архимед сконструировал несколько боевых машин, которые позволили горожанам отражать атаки превосходящих в силе римлян в течение почти трёх лет. Одной из них стала система зеркал, с помощью которой египтяне смогли сжечь флот римлян. Этот его подвиг, о котором рассказали Плутарх, Полибий и Тит Ливий, конечно, вызвал большее сочувствие у простых людей, чем вычисление числа «пи» — другой подвиг Архимеда, весьма полезный в наше время для изучающих математику.

   Архимед погиб во время осады Сиракуз: его убил римский воин в тот момент, когда учёный был поглощён поисками решения поставленной перед собой проблемы.
   Любопытно, что, завоевав Сиракузы, римляне так и не стали обладателями трудов Архимеда. Только через много веков они были обнаружены европейскими учёными. Вот почему Плутарх, одним из первых описавший жизнь Архимеда, упомянул с сожалением, что учёный не оставил ни одного сочинения.
   Плутарх пишет, что Архимед умер в глубокой старости. На его могиле была установлена плита с изображением шара и цилиндра. Её видел Цицерон, посетивший Сицилию через 137 лет после смерти учёного. Только в XVI–XVII веках европейские математики смогли, наконец, осознать значение того, что было сделано Архимедом за две тысячи лет до них.
   Он оставил многочисленных учеников. На новый путь, открытый им, устремилось целое поколение последователей, энтузиастов, которые горели желанием, как и учитель, доказать свои знания конкретными завоеваниями.
   Первым по времени из этих учеников был александриец Ктесибий, живший во II веке до нашей эры. Изобретения Архимеда в области механики были в полном ходу, когда Ктесибий присоединил к ним изобретение зубчатого колеса.

 

 

Ответ #8: 02 05 2010, 01:25:29 ( ссылка на этот ответ )

Михаил Васильевич Остроградский родился 12 (24) сентября 1801 года в деревне Пашенной Кобелякского уезда Полтавской губернии в семье небогатого помещика.
   В 1816 году он поступил на физико-математическое отделение Харьковского университета и вскоре стал удивлять всех своими необыкновенными успехами в изучении математики. На Михаила обратил внимание ректор университета, профессор Т. Ф. Осиповский — талантливый математик и выдающийся педагог. Он расположил к себе многообещающего юношу и руководил его занятиями. В октябре 1818 года Остроградский окончил Харьковский университет, а 1820 году он успешно сдал экзамены на звание кандидата наук. Перед ним, казалось, открывалась прямая дорога к университетской профессуре.
   Однако учёной степени Остроградский не получил, и причиной тому послужила острая идейная борьба, развернувшаяся в Харьковском и других университетах России, вызванная наступлением реакции в последние годы царствования Александра I. Первыми жертвами реакции стали просвещение и университеты.
   Т. Ф. Осиповский, любимец передового студенчества, человек откровенно материалистических убеждений, пришёлся не ко двору. Его отправили в отставку, одновременно нанеся удар и по его единомышленникам и поклонникам. Одному из первых досталось его лучшему ученику Остроградскому, на которого донесли, что он не посещал лекций по философии и по обязательному для всех студентов «богопознанию и христианскому учению». На этом ничтожном, надуманном основании ему не только отказали в присуждении степени кандидата наук, но и лишили его диплома об окончании университета. Это было неслыханным глумлением над будущим учёным, чей талант был замечен уже тогда.

   К счастью, мракобесам не удалось погубить талант Остроградского. Наоборот, в нём сильно укрепилась любовь к математике, и он решает продолжить свои занятия в Париже под руководством выдающихся математиков Политехнической школы. Он приезжает туда в мае 1822 года. В Политехнической школе, Сорбонне, Коллеж де Франс он слушает лекции знаменитых учёных Коши, Фурье, Лапласа, Монжа, Пуассона, Лежандра Штурма, Понселе, Вине и других, пролагавших новые пути в математическом анализе, математической физике и механике. Изучив и усвоив результаты, достигнутые французской математической школой, Остроградский и сам стал заниматься важными и актуальными вопросами того времени, часто опережая своих парижских коллег.
   Выдающиеся способности молодого учёного вскоре получили довольно широкое признание. Так, Коши в мемуаре, напечатанном в журнале Парижской академии наук в 1825 году, с похвалой отзывается о первых научных исследованиях Остроградского, посвящённых вычислению интегралов. Коши писал: «…один русский молодой человек, одарённый большой проницательностью и весьма искусный в вычислении бесконечно малых, Остроградский, прибегнув также к употреблению тех же интегралов и к преобразованию их в обыкновенные, дал новое доказательство формул, мною выше упомянутых, и обобщил другие формулы, помещённые мной в 19-й тетради Политехнической школы. Господин Остроградский любезно сообщил мне главные результаты своей работы».
   В 1826 году русский учёный представил Парижской академии наук свою первую научную работу — «Мемуар о распространении волн в цилиндрическом бассейне», высоко оценённую Коши и напечатанную в трудах академии. О научном значении этой работы можно судить хотя бы по тому, что ещё в 1816 году академия объявила специальный конкурс на её решение.
   В 1824–1827 годах Остроградский представил ещё несколько мемуаров. Эти работы укрепили научную репутацию молодого учёного и завоевали ему дружбу и уважение многих французских математиков.
   Но Михаила Васильевича неумолимо тянет на родину, где о его успехах хорошо знали. Недаром молодых людей, отправлявшихся учиться за границу, родные и близкие напутствовали словами: «Становись Остроградским».
   В 1828 году он выехал в Россию. Тяжёлой была эта поездка. В дороге его обокрали, и ему пришлось от Франкфурта-на-Майне до Петербурга добираться пешком. «Русский пешеход», пробирающийся к тому же из-за границы, выглядел весьма подозрительным, и мнительные власти, которым везде чудились восстания декабристов, установили за ним тайный полицейский надзор. Вероятно, об этом Остроградский не знал до конца своих дней.

   Сразу же после приезда Остроградского в Петербург началась его плодотворная работа в Академии наук и кипучая педагогическая деятельность. Академия наук высоко оценила научную деятельность Остроградского: в августе 1830 года его избрали экстраординарным, а через год — ординарным академиком по прикладной математике. С этого времени его жизнь была полна творческих удач, и деятельность его отмечалась присвоением ряда почётных учёных званий. Так, в 1834 году он был избран членом Американской академии наук, в 1841 году — членом Туринской академии, в 1853 году — членом Римской академии Линчей и в 1856 году — членом-корреспондентом Парижской академии.
   Научные интересы Остроградского определились рано, ещё до отъезда в Париж. В объяснении совету Харьковского университета Остроградский ещё в 1820 году писал, что желает «усовершенствовать себя по части наук, относящихся к прикладной математике». И действительно, многие свои труды он посвятил математической физике и механике, став одним из тех, кто заложил фундамент этих наук.
   По математической физике Остроградский написал пятнадцать работ. Большая часть их относится к задачам распространения тепла, теории упругости, гидродинамики. Наибольшее научное значение имеют его работы по теории теплоты. Эти исследования, помимо того, что содержат важнейшие результаты, относящиеся непосредственное к теории распространения тепла, имеют огромное общематематическое значение. В них, с одной стороны, заложены начала для ряда важных теорий, развивающихся в наше время, а с другой стороны, в них содержатся теоремы, являющиеся одними из центральных в математическом анализе.
   Первым из русских учёных Остроградский стал заниматься аналитической механикой. Ему принадлежат первоклассные исследования по методам интегрирования уравнений аналитической механики и разработке обобщённых принципов статики и динамики.
   Наиболее выдающиеся исследования Остроградского относятся к обобщениям основных принципов и методов механики. Он внёс существенный вклад в развитие вариационных принципов. Вариационные принципы механики входят в круг вопросов, интересовавших учёного в течение всей его жизни. Постоянное возвращение к вариационному исчислению и вариационным принципам механики роднит его с Лагранжем, одним из создателей вариационного исчисления и творцом аналитической механики.
   Остроградский изучал проблемы аналитической механики в самом общем виде. Такая постановка вопроса вела в свою очередь к изучению вариационного исчисления, в которое, как частный случай, входит динамика. Мемуар Остроградского «О дифференциальных уравнениях, относящихся к задаче изопериметров», напечатанный в «Трудах» Петербургской академии наук в 1850 году, принадлежит в равной мере механике и вариационному исчислению. В силу такого подхода исследования Остроградского по механике значительно обогатили и развили понимание вариационных принципов, прежде всего, с математической точки зрения. Поэтому интегрально-вариационный принцип, сформулированный Гамильтоном, справедливо называется принципом Гамильтона—Остроградского.

   Его труды по механике, включая «Лекции по аналитической механике» и «Курс небесной механики», явились фундаментом, на котором строилась и развивалась русская школа в области механики. Работы Остроградского по математическому анализу в большинстве случаев вызваны его исследованиями по математической физике и механике: они дают решение математических вопросов, поставленных теоретическим естествознанием того времени. Так, в связи с исследованиями вопросов распространения тепла в твёрдом теле он получил знаменитую формулу, вошедшую теперь во все учебники математического анализа под именем формулы Остроградского—Грина. В настоящее время эта формула играет огромную роль в математической физике, векторном анализе и других разделах математики и её приложений.
   Не будет преувеличением сказать, что Остроградский внёс выдающийся вклад и в область математического анализа. Его результаты вошли в современную математику в качестве существенной и неотъемлемой её части и представляют собой то необходимое оружие, без которого математика уже не может обойтись.
   В круг интересов Остроградского входили также и алгебра, и теория чисел, и теория вероятностей. По словам Н. Е. Жуковского, «в творениях М. В. Остроградского нас привлекает общность анализа, основная мысль, столь же широкая, как широк простор его родных полей».
   Остроградский оказал неоценимую услугу русской науке, воспитав целую плеяду талантливых учеников, впоследствии ставшие выдающимися представителями русской науки. В их числе И. А. Вышнеградский — основоположник теории автоматического регулирования; Н. П. Петров — создатель гидродинамической теории смазки и автор классических исследований по теории механизмов, А. Н. Тихомандрицкий, Е. И. Бейер, Д. М. Деларю, Е. Ф. Сабинин — профессора математики и многие другие математики и выдающиеся инженеры.
   В разные годы Остроградский преподавал в Офицерских классах при Морском кадетском корпусе, был профессором Института корпуса инженеров путей сообщения, лучшего в то время технического учебного заведения страны. Он читал курс лекций на физико-математическом отделении Главного педагогического института, в стенах которого учились Д. И. Менделеев, Н. А. Добролюбов, И. А. Вышнеградский. С 1841 года преподавал в Офицерских классах Главного артиллерийского и Главного инженерного училищ. Остроградский до конца своей жизни оставался профессором всех этих учебных заведений.
   На основе составленных при участии и под руководством Остроградского учебных планов, программ и конспектов были составлены учебные руководства по математическим наукам для военно-учебных заведений. В 1852 году вышли в литографированном издании лекции по аналитической механике, которые читал Остроградский в Главном педагогическом институте. Эти лекции имели большое значение для распространения физико-математических наук в России. Изложение Остроградского во многом оригинально. Он искал в механике наиболее простых и общих принципов, позволяющих доказывать её теоремы наиболее изящно, кратко и просто.

   Студенты с восторгом встретили новый курс Остроградского. Один из слушателей Института инженеров путей сообщения В. А. Панаев, впоследствии крупный инженер, вспоминал: «Сочинение, которым Остроградский обессмертил себя, разрешив основной вопрос самой высшей мировой науки о движении, не разрешённый до того ни одним из прежних великих геометров, чем и короновал эту науку окончательно, и такой-то классический труд в цельном виде, отдельным сочинением, которого ждал учёный мир с нетерпением, в печати не появилось. Отчего же не появилось это сочинение? Всё по той же причине: у Остроградского не было материальных средств».
   Также Остроградский написал несколько учебных пособий и трёхтомное «Руководство начальной геометрии».
   Он был решительным сторонником введения в старших классах средних школ идеи функции и начал анализа. По его инициативе в 1850 году в кадетских корпусах были введены элементы высшей математики. Он шёл ещё дальше и утверждал, что основные понятия высшей математики должны стать достоянием широких кругов грамотных людей. Остроградский настойчиво добивался, чтобы преподавание математики и механики было увязано с физикой и естествознанием. Таким образом, есть все основания заключить, что в ряде пунктов Остроградский предвосхитил идеи известного международного движения за реформу преподавания, возникшего в XX веке.
   Педагогические интересы Остроградского не ограничивались лишь вопросами методики преподавания математики. Его глубоко интересовали и общие проблемы воспитания и образования, которыми он особенно увлекался в последние годы своей жизни. Примечательно в этом отношении его сочинение «Размышления о преподавании», написанное совместно с французским математиком А. Блумом. Высказанные в нём идеи настолько свежи, интересны, что, появись эта брошюра в наши дни, она была бы воспринята читателем как увлекательное педагогическое сочинение, толкующее о вполне современных педагогических проблемах.
   Интенсивная деятельность Остроградского продолжалась в Академии наук свыше тридцати лет; за это время в каждом томе «Записок» академии были помещены его мемуары. Содержание этих мемуаров предварительно докладывалось на собраниях академии.
   Он давал отзывы на присылавшиеся в академию исследования, читал циклы публичных лекций. Учёный принимал деятельное участие в работе разнообразных комиссий Академии наук: по введению григорианского календаря и по астрономическому определению мест империи, по исследованию возможности применения электромагнетизма для движения судов по способу, предложенному Б. С. Якоби, по введению в России десятичной системы мер, весов и монет и других.

   Михаил Васильевич Остроградский скончался в Полтаве 20 декабря 1861 года (по новому стилю — 1 января 1862 года).

 

 

Ответ #9: 02 05 2010, 11:46:25 ( ссылка на этот ответ )

В одном из некрологов Пьеру Ферма говорилось: «Это был один из наиболее замечательных умов нашего века, такой универсальный гений и такой разносторонний, что если бы все учёные не воздали должное его необыкновенным заслугам, то трудно было бы поверить всем вещам, которые нужно о нём сказать, чтобы ничего не упустить в нашем похвальном слове».
   К сожалению, о жизни великого учёного известно не так много. Пьер Ферма родился на юге Франции в небольшом городке Бомон-де-Ломань, где его отец — Доминик Ферма — был «вторым консулом», т. е. чем-то вроде помощника мэра. Метрическая запись о его крещении от 20 августа 1601 года гласит: «Пьер, сын Доминика Ферма, буржуа и второго консула города Бомона». Мать Пьера, Клер де Лонг, происходила из семьи юристов.
   Доминик Ферма дал своему сыну очень солидное образование. В колледже родного города Пьер приобрёл хорошее знание языков: латинского, греческого, испанского, итальянского. Впоследствии он писал стихи на латинском, французском и испанском языках «с таким изяществом, как если бы он жил во времена Августа и провёл большую часть своей жизни при дворе Франции или Мадрида».
   Ферма славился как тонкий знаток античности, к нему обращались за консультацией по поводу трудных мест при изданиях греческих классиков. Из древних писателей он комментировал Атенея, Полюнуса, Синезуса, Теона Смирнского и Фронтина, исправил текст Секста Эмпирика. По общему мнению, он мог бы составить себе имя в области греческой филологии.
   Но Ферма направил всю силу своего гения на математические исследования. И всё же математика не стала его профессией. Учёные его времени не имели возможности посвятить себя целиком любимой науке.
   Ферма избирает юриспруденцию. Степень бакалавра была ему присуждена в Орлеане. С 1630 года Ферма переселяется в Тулузу, где получает место советника в парламенте (т. е. суде). О его юридической деятельности говорится в «похвальном слове», что он выполнял её «с большой добросовестностью и таким умением, что он славился как один из лучших юристов своего времени».

   В 1631 году Ферма женился на своей дальней родственнице с материнской стороны — Луизе де Лонг. У Пьера и Луизы было пятеро детей, из которых старший, Самюэль, стал поэтом и учёным. Ему мы обязаны первым собранием сочинений Пьера Ферма, вышедшим в 1679 году. К сожалению, Самюэль Ферма не оставил никаких воспоминаний об отце.
   При жизни Ферма о его математических работах стало известно главным образом через посредство обширной переписки, которую он вёл с другими учёными. Собрание сочинений, которое он неоднократно пытался написать, так и не было им создано. Да это и неудивительно при той напряжённой работе в суде, которую ему пришлось выполнять. Ни одно из его сочинений не было опубликовано при жизни. Однако нескольким трактатам он придал вполне законченный вид, и они стали известны в рукописи большинству современных ему учёных. Кроме этих трактатов осталась ещё обширная и чрезвычайно интересная его переписка. В XVII веке, когда ещё не было специальных научных журналов, переписка между учёными играла особую роль. В ней ставились задачи, сообщалось о методах их решения, обсуждались острые научные вопросы.
   Корреспондентами Ферма были крупнейшие учёные его времени: Декарт, Этьен и Блез Паскали, де Бесси, Гюйгенс, Торричелли, Валлис. Письма посылались либо непосредственно корреспонденту, либо в Париж аббату Мерсенну (соученику Декарта по колледжу); последний размножал их и посылал тем математикам, которые занимались аналогичными вопросами. Но письма ведь почти никогда не бывают только короткими математическими мемуарами. В них проскальзывают живые чувства авторов, которые помогают воссоздать их образы, узнать об их характере и темпераменте. Обычно письма Ферма были проникнуты дружелюбием.
   Одной из первых математических работ Ферма было восстановление двух утерянных книг Аполлония «О плоских местах».
   Крупную заслугу Ферма перед наукой видят, обыкновенно, во введении им бесконечно малой величины в аналитическую геометрию, подобно тому, как это, несколько ранее, было сделано Кеплером в отношении геометрии древних. Он совершил этот важный шаг в своих относящихся к 1629 году работах о наибольших и наименьших величинах, — работах, открывших собою тот ряд исследований Ферма, который является одним из самых крупных звеньев в истории развития не только высшего анализа вообще, но и анализа бесконечно малых в частности.
   В конце двадцатых годов Ферма открыл методы нахождения экстремумов и касательных, которые, с современной точки зрения, сводятся к отысканию производной. В 1636 году законченное изложение метода было передано Мерсенну и с ним могли познакомиться все желающие.

   В 1637–1638 годах по поводу «Метода отыскания максимумов и минимумов» у Ферма возникла бурная полемика с Декартом. Последний не понял метода и подверг его резкой и несправедливой критике. В одном из писем Декарт утверждал даже, что метод Ферма «содержит в себе паралогизм». В июне 1638 года Ферма послал Мерсенну для пересылки Декарту новое, более подробное изложение своего метода. Письмо его сдержанно, но не без внутренней иронии. Он пишет: «Таким образом, обнаруживается, что либо я плохо объяснил, либо г. Декарт плохо понял моё латинское сочинение. Я всё же пошлю ему то, что уже написал, и он, несомненно, найдёт там вещи, которые помогут ему отказаться от мнения, будто я нашёл этот метод случайно и его подлинные основания мне неизвестны». Ферма ни разу не изменяет своему спокойному тону. Он чувствует своё глубокое превосходство как математика, поэтому не входит в мелочную полемику, а терпеливо старается растолковать свой метод, как это сделал бы учитель ученику.
   До Ферма систематические методы вычисления площадей разработал итальянский учёный Кавальери. Но уже в 1642 году Ферма открыл метод вычисления площадей, ограниченных любыми «параболами» и любыми «гиперболами». Им было показано, что площадь неограниченной фигуры может быть конечной.
   Ферма одним из первых занялся задачей спрямления кривых, т. е. вычислением длины их дуг. Он сумел свести эту задачу к вычислению некоторых площадей.
   Таким образом, понятие «площади» у Ферма приобретало уже весьма абстрактный характер. К определению площадей сводились задачи на спрямление кривых, вычисление сложных площадей он сводил с помощью подстановок к вычислению более простых площадей. Оставался только шаг, чтобы перейти от площади к ещё более абстрактному понятию «интеграл».
   Дальнейший успех методов определения «площадей», с одной стороны, и «методов касательных и экстремумов» — с другой, состоял в установлении взаимной связи этих методов. Есть указания на то, что Ферма уже видел эту связь, знал, что «задачи на площади» и «задачи на касательные» являются взаимно обратными. Но он нигде не развил своё открытие сколько-нибудь подробно. Поэтому честь его по праву приписывается Барроу, Ньютону и Лейбницу, которым это открытие и позволило создать дифференциальное и интегральное исчисления.
   Несмотря на отсутствие доказательств (из них дошло только одно), трудно переоценить значение творчества Ферма в области теории чисел. Ему одному удалось выделить из хаоса задач и частных вопросов, сразу же возникающих перед исследователем при изучении свойств целых чисел, основные проблемы, которые стали центральными для всей классической теории чисел. Ему же принадлежит открытие мощного общего метода для доказательства теоретико-числовых предложений — так называемого метода неопределённого или бесконечного спуска, о котором будет сказано ниже. Поэтому Ферма по праву может считаться основоположником теории чисел.

   В письме к де Бесси от 18 октября 1640 года Ферма высказал следующее утверждение: если число a не делится на простое число p, то существует такой показатель k, что a–1 делится на p, причём k является делителем p–1. Это утверждение получило название малой теоремы Ферма. Оно является основным во всей элементарной теории чисел. Эйлер дал этой теореме несколько различных доказательств.

   В задаче второй книги своей «Арифметики» Диофант поставил задачу представить данный квадрат в виде суммы двух рациональных квадратов. На полях, против этой задачи, Ферма написал:
   «Наоборот, невозможно разложить ни куб на два куба, ни биквадрат на два биквадрата и вообще ни в какую степень, большую квадрата, на две степени с тем же показателем. Я открыл этому поистине чудесное доказательство, но эти поля для него слишком узки». Это и есть знаменитая Великая теорема.
   Теорема эта имела удивительную судьбу. В прошлом веке её исследования привели к построению наиболее тонких и прекрасных теорий, относящихся к арифметике алгебраических чисел. Без преувеличения можно сказать, что она сыграла в развитии теории чисел не меньшую роль, чем задача решения уравнений в радикалах. С той только разницей, что последняя уже решена Галуа, а Великая теорема до сих пор побуждает математиков к исследованиям.
   С другой стороны, простота формулировки этой теоремы и загадочные слова о «чудесном доказательстве» её привели к широкой популярности теоремы среди нематематиков и к образованию целой корпорации «ферматистов», у которых, по словам Дэвенпорта, «смелость значительно превосходит их математические способности». Поэтому Великая теорема стоит на первом месте по числу данных ей неверных доказательств.
   Сам Ферма оставил доказательство Великой теоремы для четвёртых степеней. Здесь он применил «метод неопределённого или бесконечного спуска», который он описывал в своём письме к Каркави (август 1659 года) следующим образом:
   «Если бы существовал некоторый прямоугольный треугольник в целых числах, который имел бы площадь, равную квадрату, то существовал бы другой треугольник, меньший этого, который обладал бы тем же свойством. Если бы существовал второй, меньший первого, который имел бы то же свойство, то существовал бы в силу подобного рассуждения третий, меньший второго, который имел бы то же свойство, и, наконец, четвёртый, пятый, спускаясь до бесконечности. Но если задано число, то не существует бесконечности по спуску меньших его (я всё время подразумеваю целые числа). Откуда заключают, что не существует никакого прямоугольного треугольника с квадратной площадью». Именно этим методом были доказаны многие предложения теории чисел, и, в частности, с его помощью Эйлер доказал Великую теорему для n=4 (способом, несколько отличным от способа Ферма), а спустя 20 лет и для n=3.

   В прошлом веке Куммер, занимаясь Великой теоремой Ферма, построил арифметику для целых алгебраических чисел определённого вида. Это позволило ему доказать Великую теорему для некоторого класса простых показателей n. В настоящее время справедливость Великой теоремы проверена для всех показателей n меньше 5500.
   Отметим также, что Великая теорема связана не только с алгебраической теорией чисел, но и с алгебраической геометрией, которая сейчас интенсивно развивается.
   У Ферма есть много других достижений. Он первым пришёл к идее координат и создал аналитическую геометрию. Он занимался также задачами теории вероятностей. Но Ферма не ограничивался одной только математикой, он занимался и физикой, где ему принадлежит открытие закона распространения света в средах. Ферма исходил из предположения, что свет пробегает путь от какой-либо точки в одной среде до некоторой точки в другой среде в наикратчайшее время. Применив свой метод максимумов и минимумов, он нашёл путь света и установил, в частности, закон преломления света. При этом Ферма высказал следующий общий принцип: «Природа всегда действует наиболее короткими путями», который может считать предвосхищением принципа наименьшего действия Мопертюи — Эйлера.
   Одно из последних писем учёного к Каркави получило название «завещание Ферма». Вот его заключительные строки:

   «Быть может, потомство будет признательно мне за то, что я показал ему, что древние не всё знали, и это может проникнуть в сознание тех, которые придут после меня для передачи факела сыновьям, как говорит великий канцлер Англии, следуя чувствам которого, я добавлю: „Многие будут приходить и уходить, а наука обогащается“».
   Пьер Ферма скончался 12 января 1665 года во время одной из деловых поездок.

 

 

Страниц: 1 2 3 4 ... 20 | ВверхПечать