Максимум Online сегодня: 493 человек.
Максимум Online за все время: 4395 человек.
(рекорд посещаемости был 29 12 2022, 01:22:53)


Всего на сайте: 24816 статей в более чем 1761 темах,
а также 362237 участников.


Добро пожаловать, Гость. Пожалуйста, войдите или зарегистрируйтесь.
Вам не пришло письмо с кодом активации?

 

Сегодня: 03 07 2024, 11:18:29

Мы АКТИВИСТЫ И ПОСЕТИТЕЛИ ЦЕНТРА "АДОНАИ", кому помогли решить свои проблемы и кто теперь готов помочь другим, открываем этот сайт, чтобы все желающие, кто знает работу Центра "Адонаи" и его лидера Константина Адонаи, кто может отдать свой ГОЛОС В ПОДДЕРЖКУ Центра, могли здесь рассказать о том, что знают; пообщаться со всеми, кого интересуют вопросы эзотерики, духовных практик, биоэнергетики и, непосредственно "АДОНАИ" или иных центров, салонов или специалистов, практикующим по данным направлениям.

Страниц: 1 ... 7 8 9 10 11 ... 20 | Вниз

Ответ #40: 11 05 2010, 08:42:34 ( ссылка на этот ответ )

Шотландский бактериолог Александр Флеминг родился 6 августа 1881 года в графстве Эйршир в семье фермера Хью Флеминга и его второй жены Грейс (Мортон) Флеминг.
   Он был седьмым ребёнком у своего отца и третьим — у матери. Когда мальчику исполнилось семь лет, умер отец, и матери пришлось самой управляться с фермой; её помощником был старший брат Флеминга по отцу, Томас. Флеминг посещал маленькую сельскую школу, расположенную неподалёку, а позже Килмарнокскую академию, рано научился внимательно наблюдать за природой. В возрасте тринадцати лет он вслед за старшими братьями отправился в Лондон, где работал клерком, посещал занятия в Политехническом институте на Риджент-стрит, а в 1900 году вступил в Лондонский шотландский полк. Флемингу нравилась военная жизнь, он заслужил репутацию первоклассного стрелка и ватерполиста; к тому времени англо-бурская война уже кончилась, и Флемингу не довелось служить в заморских странах.
   Спустя год он получил наследство в 250 фунтов стерлингов, что составляло почти 1200 долларов — немалую сумму по тем временам. По совету старшего брата он подал документы на национальный конкурс для поступления в медицинскую школу. На экзаменах Флеминг получил самые высокие баллы и стал стипендиатом медицинской школы при больнице св. Марии. Александр изучал хирургию и, выдержав экзамены, в 1906 году стал членом Королевского колледжа хирургов. Оставаясь работать в лаборатории патологии профессора Алмрота Райта больницы св. Марии, он в 1908 году получил степени магистра и бакалавра наук в Лондонском университете.

   В то время врачи и бактериологи полагали, что дальнейший прогресс будет связан с попытками изменить, усилить или дополнить свойства иммунной системы. Открытие в 1910 году сальварсана Паулем Эрлихом лишь подтвердило эти предположения. Эрлих был занят поисками того, что он называл «магической пулей», подразумевая под этим такое средство, которое уничтожало бы попавшие в организм бактерии, не причиняя вреда тканям организма больного и даже взаимодействуя с ними.
   Лаборатория Райта была одной из первых, получивших образцы сальварсана для проверки. В 1908 году Флеминг приступил к экспериментам с препаратом, используя его также в частной медицинской практике для лечения сифилиса. Прекрасно осознавая все проблемы, связанные с сальварсаном, он тем не менее верил в возможности химиотерапии. В течение нескольких лет, однако, результаты исследований были таковы, что едва ли могли подтвердить его предположения.
   После вступления Британии в Первую мировую войну Флеминг служил капитаном в медицинском корпусе Королевской армии, участвуя в военных действиях во Франции. В 1915 году он женился на медсестре Саре Марион Макэлрой, ирландке по происхождению. У них родился сын.
   Работая в лаборатории исследований ран, Флеминг вместе с Райтом пытался определить, приносят ли антисептики какую-либо пользу при лечении инфицированных поражений. Флеминг показал, что такие антисептики, как карболовая кислота, в то время широко применявшаяся для обработки открытых ран, убивает лейкоциты, создающие в организме защитный барьер, что способствует выживанию бактерий в тканях.
   В 1922 году, после неудачных попыток выделить возбудителя обычных простудных заболеваний, Флеминг чисто случайно открыл лизоцим — фермент, убивающий некоторые бактерии и не причиняющий вреда здоровым тканям. К сожалению, перспективы медицинского использования лизоцима оказались довольно ограниченными, поскольку он был весьма эффективным средством против бактерий, не являющихся возбудителями заболеваний, и совершенно неэффективным против болезнетворных организмов. Это открытие, однако, побудило Флеминга заняться поисками других антибактериальных препаратов, которые были бы безвредны для организма человека.
   Другая счастливая случайность — открытие Флемингом пенициллина в 1928 году — явилась результатом стечения ряда обстоятельств, столь невероятных, что в них почти невозможно поверить. В отличие от своих аккуратных коллег, очищавших чашки с бактериальными культурами после окончания работы с ними, Флеминг не выбрасывал культуры по 2–3 недели кряду, пока его лабораторный стол не оказывался загромождённым сорока или пятьюдесятью чашками. Тогда он принимался за уборку, просматривал культуры одну за другой, чтобы не пропустить что-нибудь интересное. В одной из чашек он обнаружил плесень, которая, к его удивлению, угнетала высеянную культуру бактерии. Отделив плесень, он установил, что «бульон, на котором разрослась плесень… приобрёл отчётливо выраженную способность подавлять рост микроорганизмов, а также бактерицидные и бактериологические свойства».

   Неряшливость Флеминга и сделанное им наблюдение явились всего лишь двумя обстоятельствами в целом ряду случайностей, способствовавших открытию. Плесень, которой оказалась заражена культура, относилась к очень редкому виду. Вероятно, она была занесена из лаборатории, расположенной этажом ниже, где выращивались образцы плесени, взятые из домов больных, страдающих бронхиальной астмой, с целью изготовления из них десенсибилизирующих экстрактов. Флеминг оставил ставшую впоследствии знаменитой чашку на лабораторном столе и уехал отдыхать. Наступившее в Лондоне похолодание создало благоприятные условия для роста плесени, а наступившее затем потепление — для бактерий. Как выяснилось позднее, стечению именно этих обстоятельств было обязано знаменитое открытие.
   Первоначальные исследования Флеминга дали ряд важных сведений о пенициллине. Он писал, что это «эффективная антибактериальная субстанция… оказывающая выраженное действие на пиогенные кокки… и палочки дифтерийной группы… Пенициллин даже в огромных дозах не токсичен для животных… Можно предположить, что он окажется эффективным антисептиком при наружной обработке участков, поражённых чувствительными к пенициллину микробами, или при его введении внутрь». Зная это, Флеминг, как ни странно, не сделал столь очевидного следующего шага, который двенадцать лет спустя был предпринят Хоуардом У. Флори и состоял в том, чтобы выяснить, будут ли спасены мыши от летальной инфекции, если лечить их инъекциями пенициллинового бульона. Флеминг лишь назначил его нескольким пациентам для наружного применения. Однако результаты были противоречивыми и обескураживающими. Раствор не только с трудом поддавался очистке, если речь шла о больших его количествах, но и оказывался нестабильным.
   Подобно Пастеровскому институту в Париже, отделение вакцинации в больнице св. Марии, где работал Флеминг, существовало благодаря продаже вакцин. Флеминг обнаружил, что в процессе приготовления вакцин пенициллин помогает предохранить культуры от стафилококка. Это было небольшое техническое достижение, и Флеминг широко пользовался им, еженедельно отдавая распоряжение изготовить большие партии бульона. Он делился образцами культуры пенициллина с некоторыми коллегами в других лабораториях, но ни разу не упомянул о пенициллине ни в одной из двадцати семи статей или лекций, опубликованных им в 1930–1940 годы, даже если речь в них шла о веществах, вызывающих гибель бактерий.
   Пенициллин, возможно, был бы навсегда забыт, если бы не более раннее открытие Флемингом лизоцима. Именно это открытие заставило Флори и Эрнста Б. Чейна заняться изучением терапевтических свойств пенициллина, в результате чего препарат был выделен и подвергнут клиническим испытаниям. Все почести и слава, однако, достались Флемингу. Случайное открытие пенициллина в чашке с бактериальной культурой дало прессе сенсационную историю, способную поразить воображение любого человека.
   Нобелевская премия по физиологии и медицине 1945 года была присуждена совместно Флемингу, Чейну и Флори «за открытие пенициллина и его целебного воздействия при различных инфекционных болезнях». Горан Лилиестранд из Каролинского института сказал в приветственной речи: «История пенициллина хорошо известна во всём мире. Она являет собой прекрасный пример совместного применения различных научных методов во имя великой общей цели и ещё раз показывает нам непреходящую ценность фундаментальных исследований». В нобелевской лекции Флеминг отметил, что «феноменальный успех пенициллина привёл к интенсивному изучению антибактериальных свойств плесеней и других низших представителей растительного мира». Лишь немногие из них, сказал он, обладают такими свойствами. «Существует, однако, стрептомицин, открытый [Зелманом А.] Ваксманом… который наверняка найдёт применение в практической медицине; появятся и другие вещества, которые ещё предстоит изучить».
   В оставшиеся десять лет жизни учёный был удостоен двадцати пяти почётных степеней, двадцати шести медалей, восемнадцати премий, тринадцати наград и почётного членства в восьмидесяти девяти академиях наук и научных обществах, а в 1944 году — дворянского звания.

   После смерти жены в 1949 году состояние здоровья Флеминга резко ухудшилось. В 1952 году он женился на Амалии Куцурис-Вурека, бактериологе и своей бывшей студентке. Спустя три года, 11 марта 1955 года, он умер от инфаркта миокарда.
   Его похоронили в соборе Св. Павла в Лондоне — рядом с самыми почитаемыми британцами. В Греции, где бывал учёный, в день его смерти объявили национальный траур. А в испанской Барселоне все цветочницы города высыпали охапки цветов из своих корзин к мемориальной доске с именем великого бактериолога и врача Александа Флеминга.
   Чашку с разросшимся плесневым грибом Флеминг хранил до конца жизни.

 

 

Ответ #41: 11 05 2010, 13:41:20 ( ссылка на этот ответ )

Основоположником науки о наследственности — генетики по праву считается австро-венгерский учёный Грегор Мендель. Работа исследователя, «переоткрытая» только в 1900 году, принесла посмертную славу Менделю и послужила началом новой науки, которую несколько позже назвали генетикой. До конца семидесятых годов XX века генетика в основном двигалась по пути, проложенному Менделем, и только когда учёные научились читать последовательность нуклеиновых оснований в молекулах ДНК, наследственность стали изучать не с помощью анализа результатов гибридизации, а опираясь на физико-химические методы.
   Грегор Иоганн Мендель родился в Гейнцендорфе, что в Силезии, 20 июля 1822 года в семье крестьянина. В начальной школе он обнаружил выдающиеся математические способности и по настоянию учителей продолжил образование в гимназии небольшого, находящегося поблизости городка Опава. Однако на дальнейшее обучение Менделя денег в семье недоставало. С большим трудом их удалось наскрести на завершение гимназического курса. Выручила младшая сестра Тереза: она пожертвовала скоплённым для неё приданым. На эти средства Мендель смог проучиться ещё некоторое время на курсах по подготовке в университет. После этого средства семьи иссякли окончательно.
   Выход предложил профессор математики Франц. Он посоветовал Менделю вступить в августинский монастырь города Брно. Его возглавлял в то время аббат Кирилл Напп — человек широких взглядов, поощрявший занятия наукой. В 1843 году Мендель поступил в этот монастырь и получил имя Грегор (при рождении ему было дано имя Иоганн). Через четыре года монастырь направил двадцатипятилетнего монаха Менделя учителем в среднюю школу. Затем с 1851 по 1853 год он изучал естественные науки, особенно физику, в Венском университете, после чего стал преподавателем физики и естествознания в реальном училище города Брно.
   Его педагогическую деятельность, продолжавшуюся четырнадцать лет, высоко ценили и руководство училища, и ученики. По воспоминаниям последних, он считался одним из любимейших учителей. Последние пятнадцать лет жизни Мендель был настоятелем монастыря.
   С юности Грегор интересовался естествознанием. Будучи скорее любителем, чем профессиональным учёным-биологом, Мендель постоянно экспериментировал с различными растениями и пчёлами. В 1856 году он начал классическую работу по гибридизации и анализу наследования признаков у гороха.

   Мендель трудился в крохотном, менее двух с половиною соток, монастырском садике. Он высевал горох на протяжении восьми лет, манипулируя двумя десятками разновидностей этого растения, различных по окраске цветков и по виду семян. Он проделал десять тысяч опытов. Своим усердием и терпением он приводил в немалое изумление помогавших ему в нужных случаях партнёров — Винкельмейера и Лиленталя, а также садовника Мареша, весьма склонного к выпивке. Если Мендель и давал пояснения своим помощникам, то вряд ли они могли его понять.
   Неторопливо текла жизнь в монастыре Святого Томаша. Нетороплив был и Грегор Мендель. Настойчив, наблюдателен и весьма терпелив. Изучая форму семян у растений, полученных в результате скрещиваний, он ради уяснения закономерностей передачи лишь одного признака («гладкие — морщинистые») подверг анализу 7324 горошины. Каждое семя он рассматривал в лупу, сравнивая их форму и делая записи.
   С опытов Менделя начался другой отсчёт времени, главной отличительной чертой которого стал опять же введённый Менделем гибридологический анализ наследственности отдельных признаков родителей в потомстве. Трудно сказать, что именно заставило естествоиспытателя обратиться к абстрактному мышлению, отвлечься от голых цифр и многочисленных экспериментов. Но именно оно позволило скромному преподавателю монастырской школы увидеть целостную картину исследования; увидеть её лишь после того, как пришлось пренебречь десятыми и сотыми долями, обусловленными неизбежными статистическими вариациями. Только тогда буквенно «помеченные» исследователем альтернативные признаки открыли ему нечто сенсационное: определённые типы скрещивания в разном потомстве дают соотношение 3:1, 1:1, или 1:2:1.
   Мендель обратился к работам своих предшественников за подтверждением мелькнувшей у него догадки. Те, кого исследователь почитал за авторитеты, пришли в разное время и каждый по-своему к общему заключению: гены могут обладать доминирующими (подавляющими) или рецессивными (подавляемыми) свойствами. А раз так, делает вывод Мендель, то комбинация неоднородных генов и даёт то самое расщепление признаков, что наблюдается в его собственных опытах. И в тех самых соотношениях, что были вычислены с помощью его статистического анализа. «Проверяя алгеброй гармонию» происходящих изменений в полученных поколениях гороха, учёный даже ввёл буквенные обозначения, отметив заглавной буквой доминантное, а строчной — рецессивное состояние одного и того же гена.
   Мендель доказал, что каждый признак организма определяется наследственными факторами, задатками (впоследствии их назвали генами), передающимися от родителей потомкам с половыми клетками. В результате скрещивания могут появиться новые сочетания наследственных признаков. И частоту появления каждого такого сочетания можно предсказать.
   Обобщённо результаты работы учёного выглядят так:

   • все гибридные растения первого поколения одинаковы и проявляют признак одного из родителей;
   • среди гибридов второго поколения появляются растения как с доминантными, так и с рецессивными признаками в соотношении 3:1;
   • два признака в потомстве ведут себя независимо и во втором поколении встречаются во всех возможных сочетаниях;
   • необходимо различать признаки и их наследственные задатки (растения, проявляющие доминантные признаки, могут в скрытом виде нести задатки рецессивных);
   • объединение мужских и женских гамет случайно в отношении того, задатки каких признаков несут эти гаметы.
   В феврале и марте 1865 года в двух докладах на заседаниях провинциального научного кружка, носившего название Общества естествоиспытателей города Брно, один из рядовых его членов, Грегор Мендель, сообщил о результатах своих многолетних исследований, завершённых в 1863 году. Несмотря на то что его доклады были довольно холодно встречены членами кружка, он решился опубликовать свою работу. Она увидела свет в 1866 году в трудах общества под названием «Опыты над растительными гибридами».

   Современники не поняли Менделя и не оценили его труд. Для многих учёных опровержение вывода Менделя означало бы ни много ни мало, как утверждение собственной концепции, гласившей, что приобретённый признак можно «втиснуть» в хромосому и обратить в наследуемый. Как только не сокрушали «крамольный» вывод скромного настоятеля монастыря из Брно маститые учёные, каких только эпитетов не придумывали, дабы унизить, высмеять. Но время решило по-своему.
   Да, Грегор Мендель не был признан современниками. Слишком уж простой, бесхитростной представилась им схема, в которую без нажима и скрипа укладывались сложные явления, составляющие в представлении человечества основание незыблемой пирамиды эволюции. К тому же в концепции Менделя были и уязвимые места. Так, по крайней мере, представлялось это его оппонентам. И самому исследователю тоже, поскольку он не мог развеять их сомнений. Одной из «виновниц» его неудач была ястребинка.
   Ботаник Карл фон Негели, профессор Мюнхенского университета, прочитав работу Менделя, предложил автору проверить обнаруженные им законы на ястребинке. Это маленькое растение было излюбленным объектом Негели. И Мендель согласился. Он потратил много сил на новые опыты. Ястребинка — чрезвычайно неудобное для искусственного скрещивания растение. Очень мелкое. Приходилось напрягать зрение, а оно стало всё больше и больше ухудшаться. Потомство, полученное от скрещивания ястребинки, не подчинялось закону, как он считал, правильному для всех. Лишь спустя годы после того, как биологи установили факт иного, не полового размножения ястребинки, возражения профессора Негели, главного оппонента Менделя, были сняты с повестки дня. Но ни Менделя, ни самого Негели уже, увы, не было в живых.
   Очень образно о судьбе работы Менделя сказал крупнейший советский генетик академик Б. Л. Астауров, первый президент Всесоюзного общества генетиков и селекционеров имени Н. И. Вавилова:
   «Судьба классической работы Менделя превратна и не чужда драматизма. Хотя им были обнаружены, ясно показаны и в значительной мере поняты весьма общие закономерности наследственности, биология того времени ещё не доросла до осознания их фундаментальности. Сам Мендель с удивительной проницательностью предвидел общезначимость обнаруженных на горохе закономерностей и получил некоторые доказательства их применимости к некоторым другим растениям (трём видам фасоли, двум видам левкоя, кукурузе и ночной красавице). Однако его настойчивые и утомительные попытки приложить найденные закономерности к скрещиванию многочисленных разновидностей и видов ястребинки не оправдали надежд и потерпели полное фиаско. Насколько счастлив был выбор первого объекта (гороха), настолько же неудачен второй. Только много позднее, уже в нашем веке, стало понятно, что своеобразные картины наследования признаков у ястребинки являются исключением, лишь подтверждающим правило. Во времена Менделя никто не мог подозревать, что предпринятые им скрещивания разновидностей ястребинки фактически не происходили, так как это растение размножается без опыления и оплодотворения, девственным путём, посредством так называемой апогамии. Неудача кропотливых и напряжённых опытов, вызвавших почти полную потерю зрения, свалившиеся на Менделя обременительные обязанности прелата и преклонные годы вынудили его прекратить любимые исследования.
   Прошло ещё несколько лет, и Грегор Мендель ушёл из жизни, не предчувствуя, какие страсти будут бушевать вокруг его имени и какой славой оно, в конце концов, будет покрыто. Да, слава и почёт придут к Менделю уже после смерти. Он же покинет жизнь, так и не разгадав тайны ястребинки, не „уложившейся“ в выведенные им законы единообразия гибридов первого поколения и расщепления признаков в потомстве».

   Менделю было бы значительно легче, знай он о работах другого учёного Адамса, опубликовавшего к тому времени пионерскую работу о наследовании признаков у человека. Но Мендель не был знаком с этой работой. А ведь Адамс на основе эмпирических наблюдений за семьями с наследственными заболеваниями фактически сформулировал понятие наследственных задатков, подметив доминантное и рецессивное наследование признаков у человека. Но ботаники не слышали о работе врача, а тому, вероятно, выпало на долю столько практической лечебной работы, что на абстрактные размышления просто не хватало времени. В общем, так или иначе, но генетики узнали о наблюдениях Адамса, только приступив всерьёз к изучению истории генетики человека.
   Не повезло и Менделю. Слишком рано великий исследователь сообщил о своих открытиях научному миру. Последний был к этому ещё не готов. Лишь в 1900 году, переоткрыв законы Менделя, мир поразился красоте логики эксперимента исследователя и изящной точности его расчётов. И хотя ген продолжал оставаться гипотетической единицей наследственности, сомнения в его материальности окончательно развеялись.
   Мендель был современником Чарлза Дарвина. Но статья брновского монаха не попалась на глаза автору «Происхождения видов». Остаётся лишь гадать, как бы оценил Дарвин открытие Менделя, если бы ознакомился с ним. Между тем великий английский натуралист проявлял немалый интерес к гибридизации растений. Скрещивая разные формы львиного зева, он по поводу расщепления гибридов во втором поколении писал: «Почему это так. Бог знает…»
   Умер Мендель 6 января 1884 года, настоятелем того монастыря, где вёл свои опыты с горохом. Не замеченный современниками, Мендель, тем не менее, нисколько не поколебался в своей правоте. Он говорил: «Моё время ещё придёт». Эти слова начертаны на его памятнике, установленном перед монастырским садиком, где он ставил свои опыты.
   Знаменитый физик Эрвин Шрёдингер считал, что применение законов Менделя равнозначно внедрению квантового начала в биологии.
   Революционизирующая роль менделизма в биологии становилась всё более очевидной. К началу тридцатых годов нашего столетия генетика и лежащие в её основе законы Менделя стали признанным фундаментом современного дарвинизма. Менделизм сделался теоретической основой для выведения новых высокоурожайных сортов культурных растений, более продуктивных пород домашнего скота, полезных видов микроорганизмов. Менделизм дал толчок развитию медицинской генетики…

   В августинском монастыре на окраине Брно сейчас поставлена мемориальная доска, а рядом с палисадником воздвигнут прекрасный мраморный памятник Менделю. Комнаты бывшего монастыря, выходящие окнами в палисадник, где Мендель вёл свои опыты, превращены теперь в музей его имени. Здесь собраны рукописи (к сожалению, часть их погибла во время войны), документы, рисунки и портреты, относящиеся к жизни учёного, принадлежавшие ему книги с его пометками на полях, микроскоп и другие инструменты, которыми он пользовался, а также изданные в разных странах книги, посвящённые ему и его открытию.

 

 

Ответ #42: 11 05 2010, 14:50:04 ( ссылка на этот ответ )

Мария Склодовска родилась 7 ноября 1867 года в Варшаве. Она была младшей из пяти детей в семье Владислава и Брониславы Склодовских. Мария воспитывалась в семье, где занятия наукой пользовались уважением. Её отец преподавал физику в гимназии, а мать, пока не заболела туберкулёзом, была директором гимназии. Мать Марии умерла, когда девочке было одиннадцать лет.
   Девочка блестяще училась и в начальной, и в средней школе. Ещё в юном возрасте она ощутила притягательную силу науки и работала лаборантом в химической лаборатории своего двоюродного брата. Великий русский химик Дмитрий Иванович Менделеев, создатель периодической таблицы химических элементов, был другом её отца. Увидев девочку за работой в лаборатории, он предсказал ей великое будущее, если она продолжит свои занятия химией. Выросшая при русском правлении, Мария принимала активное участие в движении молодых интеллектуалов и антиклерикальных польских националистов. Хотя большую часть своей жизни Кюри провела во Франции, она навсегда сохранила преданность делу борьбы за польскую независимость.
   На пути к осуществлению мечты Марии о высшем образовании стояли два препятствия: бедность семьи и запрет на приём женщин в Варшавский университет. Со своей сестрой Броней они разработали план: Мария в течение пяти лет будет работать гувернанткой, чтобы дать возможность сестре окончить медицинский институт, после чего Броня должна взять на себя расходы на высшее образование сестры. Броня получила медицинское образование в Париже и, став врачом, пригласила к себе сестру. Покинув Польшу в 1891 году, Мария поступила на факультет естественных наук Парижского университета (Сорбонны). Именно тогда она стала называть себя Марией Склодовской. В 1893 году, окончив курс первой, Мария получила степень лиценциата по физике Сорбонны (эквивалентную степени магистра). Через год она стала лиценциатом по математике. Но на этот раз Мария была второй в своём классе.
   В том же 1894 году в доме одного польского физика-эмигранта Мария встретила Пьера Кюри. Пьер был руководителем лаборатории при Муниципальной школе промышленной физики и химии. К тому времени он провёл важные исследования по физике кристаллов и зависимости магнитных свойств веществ от температуры. Мария занималась исследованием намагниченности стали, и её польский друг надеялся, что Пьер сможет предоставить Марии возможность поработать в своей лаборатории. Сблизившись сначала на почве увлечения физикой, Мария и Пьер через год вступили в брак. Это произошло вскоре после того, как Пьер защитил докторскую диссертацию — 25 июля 1895 года.

   «Наше первое жилище, — вспоминает сама Мария, — небольшая, крайне скромная квартира из трёх комнат была на улице Гласьер, недалеко от Школы физики. Основное её достоинство составлял вид на громадный сад. Мебель, — самая необходимая, — состояла из вещей, принадлежавших нашим родителям. Прислуга нам была не по средствам. На меня почти целиком легли заботы о домашнем хозяйстве, но я и так уже привыкла к этому за время студенческой жизни.
   Оклад профессора Пьера Кюри составлял шесть тысяч франков в год, и мы не хотели, чтобы он, по крайней мере, на первое время, брал дополнительную работу. Что касается меня, начала готовиться к конкурсному экзамену, необходимому, чтобы занять место в женской школе, и добилась этого в 1896 году.
   Наша жизнь была полностью отдана научной работе, и наши дни проходили в лаборатории, где Шютценберже позволил мне работать вместе с мужем…
   Мы жили очень дружно, наши интересы во всём совпадали: теоретическая работа, исследования в лаборатории, подготовка к лекциям или к экзаменам. За одиннадцать лет нашей совместной жизни мы почти никогда не разлучались, и поэтому наша переписка за эти годы занимает лишь немного строк. Дни отдыха и каникулы посвящались прогулкам пешком или на велосипедах либо в деревне в окрестностях Парижа, либо на побережье моря или в горах».
   Первая их дочь Ирен родилась в сентябре 1897 года. Через три месяца Кюри завершила своё исследование по магнетизму и начала искать тему для диссертации.
   В 1896 году Анри Беккерель обнаружил, что урановые соединения испускают глубоко проникающее излучение. В отличие от рентгеновского, открытого в 1895 году Вильгельмом Рентгеном, излучение Беккереля было не результатом возбуждения от внешнего источника энергии, например от света, а внутренним свойством самого урана. Очарованная этим загадочным явлением и перспективой положить начало новой области исследований, Кюри решила заняться изучением этого излучения. Приступив к работе в начале 1898 года, она, прежде всего, попыталась установить, существуют ли другие вещества, кроме соединений урана, которые испускают открытые Беккерелем лучи. Поскольку Беккерель заметил, что в присутствии соединений урана воздух становится электропроводным, Кюри измеряла электропроводность вблизи образцов других веществ, используя несколько точных приборов, разработанных и построенных Пьером Кюри и его братом Жаком.

   «Мои опыты показали, — писала позднее Кюри, — что излучение соединений урана можно точно измерять в определённых условиях и что это излучение представляет собой атомарное свойство элемента урана; его интенсивность пропорциональна количеству урана, содержащемуся в том или ином соединении, и не зависит ни от особенностей химического соединения, ни от внешних условий, например, от освещения или температуры.
   После этого я начала искать, существуют ли другие элементы, обладающие теми же свойствами. Для этого я проверила все известные в то время элементы, в чистом виде или в виде соединений. Я обнаружила, что среди этих веществ только соединения тория испускали лучи, подобные лучам урана. Излучение тория обладает интенсивностью такого же порядка, как излучение урана, и тоже представляет собой атомарное свойство этого элемента.
   Пришлось искать новый термин, чтобы назвать это новое свойство вещества, присущее элементам урану и торию. Я предложила название радиоактивность, и с тех пор оно стало общепринятым; радиоактивные элементы получили название радиоэлементов».
   Вскоре Мария совершила гораздо более важное открытие: урановая руда, известная под названием урановой смоляной обманки, испускает более сильное излучение Беккереля, чем соединения урана и тория, и, по крайней мере, в четыре раза более сильное, чем чистый уран. Кюри высказала предположение, что в урановой смоляной обманке содержится ещё не открытый и сильно радиоактивный элемент. Весной 1898 года она сообщила о своей гипотезе и о результатах экспериментов Французской академии наук.
   Затем супруги Кюри попытались выделить новый элемент. Пьер отложил свои собственные исследования по физике кристаллов, чтобы помочь Марии. В июле и декабре 1898 года Мария и Пьер Кюри объявили об открытии двух новых элементов, которые были названы ими полонием, в честь Польши — родины Марии, и радием.
   Поскольку Кюри не выделили ни один из этих элементов, они не могли представить химикам решающего доказательства их существования. И супруги Кюри приступили к весьма нелёгкой задаче — экстрагированию двух новых элементов из урановой смоляной обманки. Чтобы экстрагировать их в измеримых количествах, исследователям необходимо было переработать огромные количества руды. В течение последующих четырёх лет Кюри работали в примитивных и вредных для здоровья условиях.

   В этот трудный, но увлекательный период жалованья Пьера не хватало, чтобы содержать семью. Несмотря на то что интенсивные исследования и маленький ребёнок занимали почти всё её время, Мария в 1900 году начала преподавать физику в Севре, в учебном заведении, готовившем учителей средней школы. Овдовевший отец Пьера переехал к Кюри и помогал присматривать за Ирен.
   В сентябре 1902 года Кюри объявили о том, что им удалось выделить одну десятую грамма хлорида радия из нескольких тонн урановой смоляной обманки. Выделить полоний им не удалось, так как тот оказался продуктом распада радия. Анализируя соединение, Мария установила, что атомная масса радия равна 225. Соль радия испускала голубоватое свечение и тепло. Это фантастическое вещество привлекло внимание всего мира. Признание и награды за его открытие пришли к супругам Кюри почти сразу.
   Завершив исследования, Мария, наконец, написала свою докторскую диссертацию. Работа называлась «Исследования радиоактивных веществ» и была представлена в Сорбонне в июне 1903 года. По мнению комитета, присудившего Кюри научную степень, её работа явилась величайшим вкладом, когда-либо внесённым в науку докторской диссертацией.
   В декабре 1903 года Шведская королевская академия наук присудила Нобелевскую премию по физике Беккерелю и супругам Кюри. Мария и Пьер Кюри получили половину награды «в знак признания… их совместных исследований явлений радиации, открытых профессором Анри Беккерелем». Кюри стала первой женщиной, удостоенной Нобелевской премии. И Мария, и Пьер Кюри были больны и не могли ехать в Стокгольм на церемонию вручения премии. Они получили её летом следующего года.
   «Присуждение Нобелевской премии, — писала Кюри, — было для нас важным событием ввиду престижа, связанного с этими премиями, учреждёнными по тем временам ещё совсем недавно (1901). С точки зрения материальной, половина этой премии представляла собой серьёзную сумму. Отныне Пьер Кюри мог передать преподавание в Школе физики Полю Ланжевену, своему бывшему ученику, физику с большой эрудицией. Кроме того, он пригласил препаратора лично для своей работы.
   Вместе с тем известность, которую принесло это счастливое событие, оказалась тяжёлым грузом для человека, не подготовленного и непривычного к ней. Это была лавина визитов, писем, просьб о лекциях и о статьях — постоянных причин потери времени, волнения и усталости».

   Ещё до того, как супруги Кюри завершили свои исследования, их работы побудили других физиков также заняться изучением радиоактивности. В 1903 году Эрнест Резерфорд и Фредерик Содди выдвинули теорию, согласно которой радиоактивные излучения возникают при распаде атомных ядер. При распаде (испускании некоторых частиц, образующих ядро) радиоактивные ядра претерпевают трансмутацию — превращение в ядра других элементов. Кюри не без колебаний приняла эту теорию, так как распад урана, тория и радия происходит настолько медленно, что в своих экспериментах ей не приходилось его наблюдать. Правда, имелись данные о распаде полония, но поведение этого элемента Кюри считала нетипичным. Всё же в 1906 году она согласилась принять теорию Резерфорда—Содди как наиболее правдоподобное объяснение радиоактивности. Именно Мария ввела термины распад и трансмутация.
   Супруги Кюри отметили действие радия на человеческий организм (как и Анри Беккерель, они получили ожоги, прежде чем поняли опасность обращения с радиоактивными веществами) и высказали предположение, что радий может быть использован для лечения опухолей. Терапевтическое значение радия было признано почти сразу, и цены на радиевые источники резко поднялись. Однако Кюри отказались патентовать экстракционный процесс и использовать результаты своих исследований в любых коммерческих целях. По их мнению, извлечение коммерческих выгод не соответствовало духу науки, идее свободного доступа к знанию. Несмотря на это, финансовое положение супругов Кюри улучшилось, так как Нобелевская премия и другие награды принесли им определённый достаток. В октябре 1904 года Пьер был назначен профессором физики в Сорбонне, а месяц спустя Мария стала официально именоваться заведующей его лабораторией. В декабре у них родилась вторая дочь, Ева, которая впоследствии стала концертирующей пианисткой и биографом своей матери.
   Мария черпала силы в признании её научных достижений, любимой работе, любви и поддержке Пьера. Как она сама признавалась: «Я обрела в браке всё, о чём могла мечтать в момент заключения нашего союза, и даже больше того». Но в 19 апреля 1906 года Пьер погиб в уличной катастрофе. Лишившись ближайшего друга и товарища по работе, Мария ушла в себя. Однако она нашла в себе силы продолжать работу. В мае, после того как Мария отказалась от пенсии, назначенной министерством общественного образования, факультетский совет Сорбонны назначил её на кафедру физики, которую прежде возглавлял её муж. Когда через шесть месяцев Кюри прочитала свою первую лекцию, она стала первой женщиной-преподавателем Сорбонны.
   После смерти мужа она оставалась нежной и преданной матерью для двух своих дочерей. Одна из дочерей, Ирен, ставшая известным физиком, вспоминает:
   «Моя мать очень любила проводить свободное время в загородных прогулках или работать в саду, а во время отпуска она предпочитала горы или море. Мария Кюри увлекалась физическими упражнениями и всегда находила повод, чтобы заняться ими и заставить нас с сестрой ими заняться. Она любила природу и умела наслаждаться ею, но только не созерцательно. В саду она занималась цветами; в горах любила ходить, останавливаясь, конечно, иногда, чтобы отдохнуть и полюбоваться пейзажем…
   Мать не вела светской жизни. Она бывала только в домах немногих друзей, да и то достаточно редко. Когда ей приходилось присутствовать на каких-нибудь приёмах или официальных торжествах, это всегда было для неё утомительно и скучно. Но она нашла способ использовать это время наилучшим образом, завязывая со своими соседями по столу беседы об их специальности. Развивая эту тему, любой из них почти всегда мог рассказать что-нибудь интересное.

   Тот факт, что мать не искала ни светских связей, ни связей с людьми влиятельными, иногда считают свидетельством её скромности. Я полагаю, что это скорее как раз обратное: она очень верно оценивала своё значение и ей нисколько не льстили встречи с титулованными особами или с министрами. Мне кажется, она была очень довольна, когда ей довелось познакомиться с Редьярдом Киплингом, а то, что её представили королеве Румынии, не произвело на неё никакого впечатления».
   В лаборатории Кюри сосредоточила свои усилия на выделении чистого металлического радия, а не его соединений. В 1910 году ей удалось в сотрудничестве с Андре Дебьерном получить это вещество и тем самым завершить цикл исследований, начатый 12 лет назад. Она убедительно доказала, что радий является химическим элементом. Кюри разработала метод измерения радиоактивных эманаций и приготовила для Международного бюро мер и весов первый международный эталон радия — чистый образец хлорида радия, с которым надлежало сравнивать все остальные источники.
   В конце 1910 году по настоянию многих учёных кандидатура Кюри была выдвинута на выборах в одно из наиболее престижных научных обществ — Французскую академию наук. Пьер Кюри был избран в неё лишь за год до своей смерти. За всю историю Французской академии наук ни одна женщина не была её членом, поэтому выдвижение кандидатуры Кюри привело к жестокой схватке между сторонниками и противниками этого шага. После нескольких месяцев оскорбительной полемики в январе 1911 года кандидатура Кюри была отвергнута на выборах большинством в один голос.
   Через несколько месяцев Шведская королевская академия наук присудила Кюри Нобелевскую премию по химии «за выдающиеся заслуги в развитии химии: открытие элементов радия и полония, выделение радия и изучение природы и соединений этого замечательного элемента». Кюри стала первым дважды лауреатом Нобелевской премии. Представляя нового лауреата, Э. В. Дальгрен отметил, что «исследование радия привело в последние годы к рождению новой области науки — радиологии, уже завладевшей собственными институтами и журналами».
   Мария затратила немало труда, чтобы добиться достойной лаборатории для развития новой науки о радиоактивности. Незадолго до начала Первой мировой войны Парижский университет и Пастеровский институт учредили Радиевый институт для исследований радиоактивности. Кюри была назначена директором отделения фундаментальных исследований и медицинского применения радиоактивности. Во время войны она обучала военных медиков применению радиологии, например, обнаружению с помощью рентгеновских лучей шрапнели в теле раненого. В прифронтовой зоне Кюри помогала создавать радиологические установки, снабжать пункты первой помощи переносными рентгеновскими аппаратами. Накопленный опыт она обобщила в монографии «Радиология и война» в 1920 году.
   После войны Кюри возвратилась в Радиевый институт. В последние годы своей жизни она руководила работами студентов и активно способствовала применению радиологии в медицине. Она написала биографию Пьера Кюри, которая была опубликована в 1923 году. Периодически Кюри совершала поездки в Польшу, которая в конце войны обрела независимость. Там она консультировала польских исследователей. В 1921 году вместе с дочерьми Кюри посетила Соединённые Штаты, чтобы принять в дар один грамм радия для продолжения опытов. Во время своего второго визита в США (1929) она получила пожертвование, на которое приобрела ещё грамм радия для терапевтического использования в одном из варшавских госпиталей. Но вследствие многолетней работы с радием её здоровье стало заметно ухудшаться.

   Мария Кюри скончалась 4 июля 1934 года от лейкемии в небольшой больнице местечка Санселлемоз во французских Альпах.

 

 

Ответ #43: 11 05 2010, 14:53:49 ( ссылка на этот ответ )

В XVI веке на небосклоне западной науки между алхимией и медициной возникает новая фигура: Парацельс — удивительный врач и алхимик, хирург, задира и дуэлянт, одинаково хорошо владеющий как ланцетом, так и шпагой.
   «Настоящая цель химии заключается не в изготовлении золота, а в приготовлении лекарств!» — эти слова определили жизненное кредо Парацельса.
   Филипп Ауреол Теофраст Бомбаст фон Гогенгейм, по прозванию Парацельс, родился 10 ноября 1493 года близ посёлка Эйнзидельн (кантон Швиц, Швейцария). По примеру своего отца Парацельс довольно рано начал изучать медицину в Германии, Франции и Италии.
   Уже в годы учения Парацельс заинтересовался химией. Он не только делал опыты, но и работал на рудниках и горных заводах. Но самое большое значение Парацельс придавал применению химии в медицине, что привело к возникновению ятрохимии.

   Когда Парацельс был студентом, в университетах химия как отдельная специальность не преподавалась. Теоретические представления о химических явлениях рассматривались в курсе философии в свете общих представлений о возникновении и исчезновении веществ. Экспериментальной же работой в области химии занимались многочисленные аптекари и алхимики. Последние, делая опыты по «трасмутации» металлов, не только открывали новые способы получения различных веществ, но и развивали натурфилософские учения древнегреческих философов Аристотеля, Эмпедокла, Левкиппа, Демокрита. Согласно этим учениям, все вещества в природе состоят из более простых частей, называемых элементами. Такими элементами, по Левкиппу и Демокриту, были атомы — мельчайшие частицы бескачественной первичной материи, различные только по величине и форме.
   В 1515 году Теофраст получил во Флоренции степень доктора медицины. Но приобретённые знания не удовлетворяли Парацельса. Наблюдая, как часто оказываются бессильными у постели больного врачи с их знаниями, довольно мало изменившимися со времён античности, Парацельс решил усовершенствовать эту область, введя в неё новые представления о болезнях и методы лечения больных. При создании новой системы медицины Парацельс опирался на знания, полученные им во время путешествий по разным странам.
   По его словам, он слушал лекции медицинских светил в крупнейших университетах, в медицинских школах Парижа и Монпелье, побывал в Италии и Испании. Был в Лиссабоне, потом отправился в Англию, переменил курс на Литву, забрёл в Польшу, Венгрию, Валахию, Хорватию. И повсюду прилежно и старательно выспрашивал и запоминал секреты искусства врачевания. Не только у докторов, но и у цирюльников, банщиков, знахарок. Он пытался узнать, как они ухаживают за больными, какие применяют средства.
   Затем Парацельс практиковал, опробывая всё то, что узнал во время своих поисков. Служил некоторое время лекарем в армии датского короля Христиана, участвовал в его походах, работал фельдшером в нидерландском войске. Армейская практика дала ему богатейший материал.
   В 1524 году Парацельс решил, наконец, прекратить странствия и поселиться в Зальцбурге; однако уже через год учёному пришлось срочно покинуть этот город, так как поддержка им борьбы крестьян против феодалов навлекла гнев городских властей.
   1526 год учёный провёл в Страсбурге, а в следующем году он был приглашён на должность городского врача в крупный швейцарский торговый город Базель. Парацельсу удалось вылечить одного богача, которому не смогли помочь лучшие лекари города. Его пригласили занять кафедру медицины в Базельском университете. На первой же лекции он перед глазами изумлённых студентов сжёг сочинения Галена и Авиценны и заявил, что даже завязки его башмаков знают больше, чем эти древние мокротники.

   В городском университете Парацельс впервые стал читать лекции студентам-медикам на немецком языке вместо традиционной латыни. Так новый профессор боролся против догматической медицины средневековья, тесно связанной с теологией.
   Философские взгляды Парацельса, изложенные им во многих трудах, сводились к следующему: между природой и человеком должна существовать гармония. Необходимым условием создания разумного общественного строя являются совместный труд людей и их равноправное участие в пользовании материальными благами. В философских работах Парацельса приводятся также основные доводы против богословской, враждебной естествознанию идеологии средневековья, даётся резкая критика общественных отношений во времена феодализма и эпохи раннего капитализма.
   В 1528 году Парацельсу пришлось тайком покинуть Базель, где ему угрожал суд за вольнодумство. Он вынужден скитаться в горных районах Ашенцелля, переходя из деревушки в деревушку, изредка врачуя крестьян.
   Парацельс хотел остаться в Кольмаре, заняться врачебной практикой. Но задержался там всего на полгода. Он не мог смириться с невежеством, шарлатанством лиц, облачённых в докторские мантии, и в Кольмаре остался верен себе.
   В Кольмаре о Парацельсе заговорили как об искуснейшем враче. Ему удавалось поднимать на ноги больных, которых другие врачи считали безнадёжными. Популярность его росла. Однако его независимое поведение, резкие суждения о собратьях по цеху, отказ от слепого преклонения перед авторитетами пришлись по нраву далеко не всем. К тому же Парацельс занимался алхимией, усердно изучал труды восточных магов и мистиков. Человек увлекающийся, пытливый, он проявлял интерес ко всему, где, как ему казалось, можно открыть что-то новое. Он заблуждался, нередко попадал в плен суеверных представлений, терпел неудачи, но продолжал поиски. Всё это давало пищу для разных домыслов о том, что Парацельс вступил в сношения с самим дьяволом. Положение усугублялось тем, что в Кольмаре продолжали сохранять свои позиции католики. Они-то ревностно следили за тем, чтобы никто не осмеливался выступать с суждениями, шедшими вразрез с установившимися представлениями. Только каноны, освящённые католической церковью, признавались действительными, любая попытка подвергнуть их пересмотру объявлялась кощунственной. В любую минуту Парацельсу могли предъявить обвинение в ереси и учинить над ним расправу.
   Из Кольмара путь скитальца лежал в Эслинген, а потом Парацельс перебрался в Нюрнберг, где он надеялся издать свои сочинения. К тому времени он написал немало. В его дорожном багаже лежало несколько сот страниц сочинений. Записывал свои наблюдения, делал выводы, высказывал собственные суждения. Он был необычайно работоспособен. Сохранились свидетельства о том, что Парацельс порой проводил за письменным столом по нескольку дней кряду, почти без сна.

   Наконец ему улыбнулось счастье. Одну за другой ему удалось издать четыре книги. Но затем неожиданно последовало решение городского магистрата о запрещении дальнейшего печатания его произведений. Причиной тому было требование профессоров и докторов медицинского факультета Лейпцигского университета, возмутившихся сочинениями Парацельса. Они не могли принять новшеств Парацельса, ибо находились во власти сложившихся представлений, которые воспринимались как истина.
   И тогда в отчаянии он бросил всё и покинул Нюрнберг, направившись в Инсбрук, надеясь заняться, наконец, постоянной врачебной практикой, по которой изрядно истосковался. Но бургомистр не поверил, что появившийся в Инсбруке человек в оборванном платье и с грубыми, как у простого мужика, руками — врач. Он велел самозванцу покинуть город.
   Случайно узнав, что в Штерцинге эпидемия чумы, Парацельс идёт в этот город. Обходя дома больных, приготовляя свои лекарства, он настойчиво пытался понять, в чём причины этого страшного заболевания, как можно предотвратить эпидемии, какими средствами следует лечить больных.
   Но когда кончилась эпидемия, Парацельс оказался не нужен и в Штерцинге. Он вынужден был опять бродить по дорогам, меняя город за городом, надеясь, что в каком-нибудь из них городские власти всё-таки удостоят его вниманием. Но даже там, где власти были бы и не прочь пригласить Парацельса, решительно возражало католическое духовенство да и протестанты всегда считали Парацельса нежелательным лицом.
   И вдруг ему неожиданно вновь улыбнулось счастье. В Ульме, а затем в Аугсбурге напечатали его труд «Большая хирургия». И эта книга сделала то, чего много лет добивался Парацельс. Она заставила заговорить о нём как о выдающемся медике.
   Подобно алхимикам, Парацельс исходил из представления, что все вещества состоят из элементов, способных соединяться друг с другом. При разложении веществ элементы разъединяются. Но в отличие от алхимиков Парацельс подчеркнул вещественный характер трёх начал: «серы» — начала горючести, «ртути» — начала летучести, «соли» — начала огнепостоянства. Считая, что каждый из четырёх элементов Аристотеля должен состоять из этих начал, Парацельс писал: «Каждый элемент состоит из трёх начал: ртути, серы и соли».

   Существенно новым в учении Парацельса было то, что он таким же образом рассматривал состав всех тел, включая и человеческий организм. Человек, считал Парацельс, образован духом, душой и телом. Нарушение взаимного равновесия главных элементов ведёт к болезни. Если в организме избыток серы, то человек заболевает лихорадкой или чумой. При избытке ртути наступает паралич. А слишком большое обилие солей вызывает расстройство желудка и водянку. Задача врача — выяснить отношение между основными элементами в теле больного и восстановить их равновесие.
   Следовательно, это нарушенное равновесие можно восстановить при помощи определённых химических препаратов. Поэтому первоочередной задачей химии Парацельс считал поиск веществ, которые могли быть использованы как лекарственные средства. С этой целью он проверял действие на людей различных соединений меди, свинца, ртути, сурьмы, мышьяка. Особую славу приобрёл Парацельс, весьма успешно применяя ртутные препараты для лечения широко распространённого в то время сифилиса.
   Парацельс много занимался химическими опытами. Он составлял лекарства, экспериментировал и диктовал результаты секретарю, который записывал их и переводил на латынь. Многие из его мыслей были перевраны при переводе, а потом ещё раз испорчены врагами.
   Парацельса обвиняли в том, что «он превратил живые тела в химические лаборатории, где различные органы, подобно перегонным кубам, печам, ретортам, реактивам, растворяют, мацерируют (размачивают — Прим. авт.), возгоняют питательные вещества».
   Сегодня бы сказали, что Парацельс моделировал интересующие его процессы. Его химическая модель жизнедеятельности организма была грубой, но материалистической и прогрессивной для своей эпохи.

   Итак, после выхода книги положение доктора Парацельса счастливо переменилось. Его принимают в лучших домах, к нему обращаются знатные вельможи. Он лечит маршала королевства Богемии Иоганна фон Лейпника. В Вене его удостаивает вниманием сам король Фердинанд.
   Получивший признание вечный скиталец использовал это для того, чтобы наверстать упущенное. Опять дни и ночи просиживает он за столом, записывая свои мысли, стремясь успеть поведать людям о том, что узнал за свою жизнь, поделиться с ними своим опытом. Он верит, что выработанные им приёмы лечения некоторых заболеваний, впервые введённые в лечебную практику лекарства, методика хирургических операций, которую он разработал, окажут немалую помощь медикам. Он словно чувствовал, что жизнь его клонится к закату. Годы скитаний, напряжённейшего труда, постоянной борьбы с недругами подорвали его организм.
   Последнее его пристанище — Зальцбург. Наконец-то он может заняться врачебной практикой и писать труды, не заботясь о том, что завтра, быть может, ему придётся перебираться в другой город. У него есть свой маленький домик на окраине, есть кабинет, своя лаборатория. У него есть теперь всё, кроме одного — здоровья. Смертельная болезнь подстерегает его в один из сентябрьских дней 1541 года.
   На могиле Парацельса в Зальцбурге поставили большой камень. Резчик высек на нём бесхитростную надпись: «Здесь погребён Филипп-Теофраст, превосходный доктор медицины, который тяжёлые раны, проказу, подагру, водянку и другие неизлечимые болезни тела идеальным искусством излечивал и завещал своё имущество разделить и пожертвовать беднякам. В 1541 году на 24 день сентября сменил он жизнь на смерть».

 

 

Ответ #44: 11 05 2010, 18:45:59 ( ссылка на этот ответ )

Пётр Леонидович Капица родился 26 июня (9 июля) 1894 года в Кронштадте в семье военного инженера, генерала Леонида Петровича Капицы, строителя кронштадтских укреплений. Это был образованный интеллигентный человек, одарённый инженер, сыгравший важную роль в развитии русских вооружённых сил. Мать, Ольга Иеронимовна, урождённая Стебницкая, была образованной женщиной. Она занималась литературой, педагогической и общественной деятельностью, оставив след в истории русской культуры.
   Пётр сначала учился год в гимназии, а затем в Кронштадтском реальном училище, которое окончил с отличием. Благодаря своим способностям и пристрастию к физике и электротехнике он допускался без всяких ограничений в физический кабинет училища. Здесь он ставил химические и физические опыты, ремонтировал приборы. Особенно ему нравилось разбирать и вновь собирать часы. Интерес к часам у него остался навсегда. Известен случай, когда уже в весьма солидном возрасте он починил часы своему старому знакомому.
   В 1912 году Капица поступил в Санкт-Петербургский политехнический институт. В августе 1914 года вспыхнула Первая мировая война. Третьекурсника Петра Капицу, как и многих студентов, мобилизовали в армию. Некоторое время он проходил службу на польском фронте шофёром санитарного отряда — на грузовике, крытом брезентом, перевозил раненых.
   В 1916 году после демобилизации из армии Капица вернулся в институт. Иоффе привлёк его к экспериментальной работе в физической лаборатории, руководимой им, а также к участию в своём семинаре — по-видимому, одном из первых физических семинаров в России. В том же году в «Журнале русского физико-химического общества» появилась первая статья Капицы.
   В 1918 году в невероятно трудных условиях Иоффе основал в Петрограде один из первых в России научно-исследовательских физических институтов. Капица был одним из первых сотрудников этого института, сыгравшего очень важную роль в развитии советской экспериментальной, теоретической и технической физики. Закончив в том же году Политехнический институт, Пётр был оставлен в нём в должности преподавателя физико-механического факультета.
   В сложной послереволюционной ситуации Иоффе всеми силами стремился сохранить семинар и своих учеников — молодых физиков, среди которых был и Капица. Почти все участники семинара были экспериментаторами и находились в очень трудном положении: из-за отсутствия необходимых материалов, инструментов, приборов, даже простой проволоки собрать экспериментальную установку оказывалось сложнейшим и волокитным делом. И, тем не менее, эксперименты ставились, и довольно сложные. В 1920 году Капица и Н. Н. Семёнов разработали метод определения магнитного момента атома, используя в нём взаимодействие пучка атомов с неоднородным магнитным полем.

   Иоффе настаивал на том, что Капице необходимо отправиться за границу, но революционное правительство не давало на это разрешения, пока в дело не вмешался Максим Горький, самый влиятельный в ту пору русский писатель. Наконец Капице позволили выехать в Англию. Он уезжал в подавленном состоянии: незадолго до этого Пётр пережил огромное горе: во время эпидемии погибли его молодая жена Надежда Черносвитова (они поженились в 1916 г.) и двое их маленьких детей.
   В мае 1921 года Капица приехал в Англию. Капица попал в лабораторию Резерфорда. Позднее Пётр Леонидович скажет о Резерфорде: «Я много обязан ему и его доброму отношению ко мне». Одновременно с посещением лекций Капица должен был пройти физический практикум, обязательный для всех начинающих работу в Кавендишской лаборатории. Руководил им Джеймс Чедвик. Практикум был рассчитан на два года, но Капица, к всеобщему удивлению, сдал все зачёты в течение двух недель и сразу приобрёл известность среди сотрудников лаборатории, включая самого Резерфорда.
   Этой известности способствовал и организованный Капицей вскоре после приезда в Кембридж семинар, названный «клубом Капицы», на котором студенты и молодые преподаватели знакомились с интересными научными проблемами, обсуждали результаты собственных исследований, а порой вели дискуссии по самым разнообразным вопросам, в том числе и весьма далёким от физики.
   По поручению Резерфорда Капица занялся изучением альфа-частиц. Это были «любимые» частицы Резерфорда, и почти все его ученики занимались их исследованием. Капица должен был определить импульс альфа-частицы.
   Для того чтобы успешно выполнить опыты по измерению импульса альфа-частицы, Капице понадобилось сильное магнитное поле. Работы по созданию сверхсильных магнитных полей постепенно стали носить самостоятельный характер и позднее увели Капицу от измерения импульса альфа-частицы к другим трудам по физике твёрдого тела. Таким образом, он отошёл от ядерной физики. Однако темой его докторской диссертации, которую он защитил в Кембридже в 1922 году, было «Прохождение альфа-частиц через вещество и методы получения магнитных полей».
   Научный авторитет Капицы быстро рос. Он успешно продвигался по ступеням академической иерархии. В 1923 году он стал доктором наук и получил престижную стипендию Максвелла. В 1924 году он был назначен заместителем директора Кавендишской лаборатории по магнитным исследованиям, а в 1925 году стал членом Тринити-колледжа. В 1928 году Академия наук СССР присвоила Капице учёную степень доктора физико-математических наук и в 1929 году избрала его своим членом-корреспондентом. В следующем году Капица становится профессором-исследователем Лондонского королевского общества.

   По настоянию Резерфорда Королевское общество строит специально для Капицы новую лабораторию. Когда Капица приступил к осуществлению своих планов по определению магнитного момента альфа-частицы, экспериментаторы получали сильные магнитные поля с помощью электромагнита, состоящего из катушки и железного сердечника. Пределом была напряжённость 50 тысяч эрстед. Выше этой цифры нельзя было подняться из-за явления магнитного насыщения железа. После наступления предела насыщения, как бы ни увеличивали силу тока, пропускаемого через электромагнит, напряжённость поля не росла.
   Капица на глазах Резерфорда совершал техническую революцию в методах экспериментальных исследований. Мощная установка Капицы, сам принцип исследований производили сильное впечатление не только на Резерфорда и его сотрудников, но и на других учёных, посещавших Кембридж. С лёгкой руки Капицы в Кавендишской лаборатории всё чаще стали появляться сложные установки и усовершенствованные приборы и аппараты. В 1934 году Капица стал первым директором новой лаборатории. Но ему было суждено там проработать всего лишь один год.
   Создание уникального оборудования для измерения температурных эффектов, связанных с влиянием сильных магнитных полей на свойства вещества, например на магнитное сопротивление, привело Капицу к изучению проблем физики низких температур. Чтобы достичь таких температур, необходимо было располагать большим количеством сжиженных газов. Разрабатывая принципиально новые холодильные машины и установки, Капица использовал весь свой недюжинный талант физика и инженера.
   Вершиной его творчества в этой области явилось создание в 1934 году необычайно производительной установки для сжижения гелия, который кипит или сжижается при температуре около 4,3 градусов Кельвина.
   В 1925 году в Париже академик Алексей Николаевич Крылов познакомил Капицу со своей дочерью Анной, которая жила тогда с матерью в столице Франции. В 1927 году Анна Алексеевна стала женой Капицы. После женитьбы Капица купил небольшой участок земли на Хантингтон-Роуд, где построил дом по своему плану. Здесь родились его сыновья Сергей и Андрей. Оба они впоследствии стали учёными.
   Находясь в Кембридже, Капица любил водить мотоцикл, курил трубку и носил костюмы из твида. Свои английские привычки он сохранил на всю жизнь. В Москве, рядом с Институтом физических проблем, для него был построен коттедж в английском стиле. Одежду и табак он выписывал из Англии.

   Отношения между Капицей и советским правительством всегда были несколько загадочными и непонятными. За время своего тринадцатилетнего пребывания в Англии Капица несколько раз возвращался в Советский Союз вместе со своей второй женой, чтобы прочитать лекции, навестить мать и провести каникулы на каком-нибудь русском курорте. Советские официальные лица неоднократно обращались к нему с просьбой остаться на постоянное жительство в СССР. Пётр Леонидович относился с интересом к таким предложениям, но выставлял определённые условия, в частности свободу поездок на Запад, из-за чего решение вопроса откладывалось.
   В конце лета 1934 года Капица вместе с женой в очередной раз приехали в Советский Союз, но, когда супруги приготовились вернуться в Англию, оказалось, что их выездные визы аннулированы. После яростной, но бесполезной стычки с официальными лицами в Москве Капица был вынужден остаться на родине, а его жене было разрешено вернуться в Англию к детям. Несколько позднее Анна Алексеевна присоединилась к мужу в Москве, а вслед за ней приехали и дети. Резерфорд и другие друзья Капицы обращались к советскому правительству с просьбой разрешить ему выезд для продолжения работы в Англии, но тщетно.
   В 1935 году Капице предложили стать директором вновь созданного Института физических проблем Академии наук СССР, но прежде, чем дать согласие, Капица почти год отказывался от предлагаемого поста. Резерфорд, смирившись с потерей своего выдающегося сотрудника, позволил советским властям купить оборудование лаборатории Капицы и отправить его морским путём в СССР. Переговоры, перевоз оборудования и монтаж его в Институте физических проблем заняли несколько лет.
   Семья Капицы поселилась тут же, на территории института, в особняке из нескольких комнат. Из холла лестница вела в комнаты наверху. На первом этаже, в большой гостиной, стояли стеклянные шкафы с коллекцией хохломских игрушек. Дети Капицы, будущие учёные Сергей и Андрей, были тогда школьниками.
   На установке, доставленной в Москву из Кавендишской лаборатории, Капица продолжал исследования в области сверхсильных магнитных полей. В опытах участвовали его кембриджские сотрудники, прибывшие на время в Москву, — механик Пирсон и лаборант Лауэрман. Эти работы заняли несколько лет. Капица считал их очень важными.
   В 1943 году на собрании президиума Академии наук СССР Пётр Леонидович сказал, что, по его мнению, в физике существуют три основных направления исследований: в области низких температур, в области ядра и, наконец, в области твёрдого тела. «Наш институт, — заявил Капица, — работает над изучением явлений, происходящих при низких температурах, вблизи абсолютного нуля. Отмечу, что за последние годы это направление — одно из быстро развивающихся в физике, и в нём можно ожидать много новых и основных открытий».

   В 1938 году Капица усовершенствовал небольшую турбину, очень эффективно сжижавшую воздух. Ему удалось обнаружить необычайное уменьшение вязкости жидкого гелия при охлаждении до температуры ниже 2,17 K, при которой он переходит в форму, называемую гелием-2. Утрата вязкости позволяет ему беспрепятственно вытекать через мельчайшие отверстия и даже взбираться по стенкам контейнера, как бы «не чувствуя» действия силы тяжести. Отсутствие вязкости сопровождается также увеличением теплопроводности. Капица назвал открытое им новое явление сверхтекучестью. Двое из бывших коллег Капицы по Кавендишской лаборатории, Дж. Ф. Аллен и А. Д. Мизенер, выполнили аналогичные исследования. Все трое опубликовали статьи с изложением полученных результатов в одном и том же выпуске британского журнала «Нейче». Статья Капицы 1938 года и две другие работы, опубликованные в 1942 году, принадлежат к числу его наиболее важных работ по физике низких температур.
   Пётр Леонидович, обладавший необычайно высоким авторитетом, смело отстаивал свои взгляды даже во время чисток, проводимых Сталиным в конце тридцатых годов. Когда в 1938 году по обвинению в шпионаже в пользу нацистской Германии был арестован сотрудник Института физических проблем Лев Ландау, Капица добился его освобождения. Для этого ему пришлось отправиться в Кремль и пригрозить в случае отказа подать в отставку с поста директора института. В своих докладах правительственным уполномоченным Капица открыто критиковал те решения, которые считал неправильными.
   После начала войны Институт физических проблем эвакуировался в Казань. По прибытии на место его разместили в помещениях Казанского университета. В тяжёлое время Капица создал самую мощную в мире турбинную установку для получения в больших масштабах необходимого промышленности жидкого кислорода.
   В 1945 году в Советском Союзе активизировались работы по созданию ядерного оружия. Капица был смещён с поста директора института и в течение восьми лет находился под домашним арестом. Он был лишён возможности общаться со своими коллегами из других научно-исследовательских институтов. У себя на даче Пётр Леонидович оборудовал небольшую лабораторию и продолжал заниматься исследованиями. Через два года после смерти Сталина, в 1955 году, он был восстановлен на посту директора Института физических проблем и пребывал в этой должности до конца жизни.
   Послевоенные научные работы Капицы охватывают самые различные области физики, включая гидродинамику тонких слоёв жидкости и природу шаровой молнии, но основные его интересы сосредоточиваются на микроволновых генераторах и изучении различных свойств плазмы.
   Работая в пятидесятые годы над созданием микроволнового генератора, учёный обнаружил, что микроволны большой интенсивности порождают в гелии отчётливо наблюдаемый светящийся разряд. Измеряя температуру в центре гелиевого разряда, он установил, что на расстоянии в несколько миллиметров от границы разряда температура изменяется примерно на два миллиона градусов Кельвина. Это открытие легло в основу проекта термоядерного реактора с непрерывным подогревом плазмы.

   Помимо достижений в экспериментальной физике, Капица проявил себя как блестящий администратор и просветитель. Под его руководством Институт физических проблем стал одним из наиболее продуктивных и престижных институтов Академии наук СССР, привлёк многих ведущих физиков страны. Капица принимал участие в создании научно-исследовательского центра неподалёку от Новосибирска — Академгородка, и высшего учебного заведения нового типа — Московского физико-технического института. Построенные Капицей установки для сжижения газов нашли широкое применение в промышленности. Использование кислорода, извлечённого из жидкого воздуха, для кислородного дутья произвело подлинный переворот в советской сталелитейной промышленности.
   В 1965 году, впервые после более чем тридцатилетнего перерыва, Капица получил разрешение на выезд из Советского Союза в Данию для получения Международной золотой медали Нильса Бора. Там он посетил научные лаборатории и выступил с лекцией по физике высоких энергий. В 1969 году учёный вместе с женой впервые совершил поездку в Соединённые Штаты.
   Капица обладал качествами, делающими его необычайно интересным в общении. Его эрудиция, глубокие познания в литературе и искусстве поражали. У него на всё хватало времени при крайней занятости работой. Сам Капица говорил, что одарённость без работоспособности, как правило, не даёт больших результатов. Пётр Леонидович отличался живым чувством юмора и высоко ценил его у других.
   Существует известный анекдот о том, как одна английская фирма попросила Капицу ликвидировать неполадки в новом электродвигателе, который по неизвестным причинам отказывался действовать. Капица внимательно осмотрел двигатель, несколько раз включал и выключал его, потом попросил принести молоток. Подумав, он ударил по двигателю молотком, и — о чудо! — электродвигатель заработал. За эту консультацию фирма заранее заплатила Капице тысячу фунтов. Представитель фирмы, увидев, что дело решилось в несколько минут, попросил Капицу письменно отчитаться за полученную сумму. Капица написал, что удар молотком по двигателю он оценивает в 1 фунт, а остальные 999 фунтов заплачены ему за то, что он безошибочно знал, в какое место надо ударить.
   17 октября 1978 года Шведская академия наук направила из Стокгольма Петру Леонидовичу Капице телеграмму о присуждении ему Нобелевской премии по физике — за фундаментальные исследования в области физики низких температур.
   От экстремально низких температур вблизи абсолютного нуля до экстремально высоких температур, необходимых для синтеза атомных ядер, — таков огромный диапазон неутомимой многолетней работы академика Петра Леонидовича Капицы.

   Умер он 8 апреля 1984 года.

 

 

Страниц: 1 ... 7 8 9 10 11 ... 20 | ВверхПечать