Максимум Online сегодня: 565 человек.
Максимум Online за все время: 4395 человек.
(рекорд посещаемости был 29 12 2022, 01:22:53)


Всего на сайте: 24816 статей в более чем 1761 темах,
а также 357858 участников.


Добро пожаловать, Гость. Пожалуйста, войдите или зарегистрируйтесь.
Вам не пришло письмо с кодом активации?

 

Сегодня: 19 04 2024, 08:35:31

Сайт adonay-forum.com - готовится посетителями и последователями Центра духовных практик "Адонаи.

Страниц: 1 ... 16 17 18  | Вниз

Ответ #85: 28 05 2010, 02:18:35 ( ссылка на этот ответ )

ГЕОЦЕНТРИЧЕСКАЯ МОДЕЛЬ МИРА

   
    Уже в древности люди хотели получить ответы на такие важные вопросы, как «что такое наша Земля?», «каковы ее размеры?», «каково ее место во Вселенной?» и т. д. Но поиски ответов оказались долгими и трудными.
    «Первые ответы на вопрос „как устроен окружающий мир?“ древние люди составляли на основе своих непосредственных впечатлений, — пишет в своей книге А.И.Климишин, — так, не ощущая никаких движений Земли, люди, естественно, предположили, что она неподвижна. Наблюдая, как Солнце, Луна, весь небосвод вращаются вокруг Земли, они восприняли это как непреложный факт. У них не было оснований сомневаться в том, что Земля плоская. И, наконец, таким логичным казалось предположение, что она расположена в центре мира…
    В Древнем Вавилоне сформировалось представление, будто Земля имеет вид выпуклого круглого острова, плавающего в мировом океане. На земную поверхность будто бы опирается небо — твердый каменный свод, к которому прикреплены звезды и планеты и по которому совершает свою ежедневную прогулку Солнце. Примечательно, что у древних шумеров слово „на“ обозначало и „небо“ и „камень“. Позже основные элементы этой вавилонской модели мира встречаются и у древних евреев; ее, в частности, придерживались и авторы Библии. Например, в книге Иова говорится, будто бы „Бог… распростер небеса твердые, как литое зеркало“ (Иов, 37, 18).» Вероятно, в Древней Греции впервые попытались научно объяснить эти явления, разгадать истинную причину их появления. Так выдающийся мыслитель Гераклит Эфесский (около 544–470 гг. до нашей эры) высказал предположение о непрерывном развитии мира. Согласно Демокриту (около 460–370 гг. до нашей эры), Вселенная состоит из бесконечного множества миров, образующихся вследствие столкновения атомов, причем одни миры рождаются, другие находятся в состоянии расцвета, третьи разрушаются. Демокрит предполагал, что Млечный Путь является скоплением большого числа звезд.

    У Пифагора встречается мысль о том, что Земля имеет форму шара и что она висит в пространстве без какой бы то ни было поддержки. Аристотель (384–322 гг. до нашей эры) в своем труде «О небе» уже приводит величину земной окружности, из чего следует, что радиус Земли в современной мере равен примерно 10 000 километрам.
    Аристотель писал, что планета состоит из земли, воды, воздуха и огня, тогда как небесные тела состоят из иной, неуничтожимой формы материи — эфира. Ученый утверждал, что упомянутые четыре «стихии» располагаются друг над другом в виде концентрических сфер. Каждый элемент, сместившись со своего «естественного» места, стремится снова занять его. Поэтому, мол, в природе и наблюдаются движения тяжелых элементов вниз (к «центру Вселенной»), а легких — вверх, где они переходят в состояние покоя. Аристотель и его последователи выступали против уже существовавших в то время представлений о возможном вращении Земли вокруг своей оси и ее движении в пространстве. Они выдвинули казавшиеся в то время неопровержимыми доказательства: если бы Земля вращалась вокруг своей оси, то возникал бы встречный ветер, который сдувал бы все с ее поверхности в сторону запада, а движение Земли неминуемо было бы обнаружено по изменению на протяжении года углового расстояния между произвольно взятой на небе парой звезд.
    Сейчас известно: земная атмосфера в равной мере принимает участие в суточном вращении Земли, расстояния же до звезд оказались настолько велики, что у Аристотеля не было никаких шансов определить подобное изменение.
    Сохранилась до наших дней работа Аристарха Самосского (около 320–230 гг. до нашей эры). Ему удалось измерить угловое расстояние Луны от Солнца в первой четверти. Он также сделал попытку определить размеры и расстояния до Луны и Солнца. По Аристарху, расстояние от Земли до Луны — 19 радиусов Земли, а до Солнца еще в 19 раз больше. По-видимому, имея в виду большие по сравнению с Землей размеры Солнца, Аристарх и высказал предположение, «что неподвижные звезды и Солнце не меняют своего места в пространстве, что Земля движется по окружности вокруг Солнца», как об этом сообщал позже и Архимед.
    Во II веке до нашей эры величайший античный астроном Гиппарх определил размеры Луны с исключительной точностью. По Гиппарху, радиус Луны равен 0,27 земных радиусов, что мало отличается от принятого ныне. Расстояние до Луны этот выдающийся астроном определил в 59 радиусов Земли (истинное среднее значение — 60,3). Однако расстояние до Солнца со времени Птолемея и вплоть до XVII века принималось равным 1120, т. е. примерно в 20 раз меньше истинного.
    Первые попытки построить модель мира, в которой объяснялись бы прямые и попятные движения планет, были сделаны Евдоксом Книдским (около 408–353 гг. до нашей эры) и Аристотелем. Но шедевром античной астрономии стал труд выдающегося александрийского ученого Клавдия Птолемея (II век нашей эры) «Альмагест», в котором была построена новая теория планетных движений.

    В то время все остальные науки о природе были еще только в зачаточном состоянии. Астрономы же, благодаря Птолемею, уже имели метод, позволявший с достаточной для того времени точностью рассчитать положение планет на небе на любое число лет вперед!
    В геоцентрической модели мира Птолемея одна планета движется с угловой скоростью по малой окружности — эпициклу, центр которого, т. е другая «средняя планета», обращается с угловой скоростью по деференту вокруг Земли. Из-за сложения обоих движений планета в пространстве описывает петлеобразную кривую — гипоциклоиду, что в проекции на небесную сферу при вполне определенных значениях угловых скоростей, а также величинах отношений радиуса эпицикла к радиусу деферента для каждой из планет полностью объясняло ее движение на небе. Эти значения Птолемей определил с большой точностью.
    В связи с особенностями движения планеты Меркурий и Венера были названы нижними. Марс, Юпитер и Сатурн — верхними планетами. В системе мира Птолемея центры эпициклов нижних планет всегда расположены на прямой, соединяющей Землю с Солнцем, а каждая из верхних планет находится на эпицикле строго в том же направлении, в котором относительно Земли находится Солнце, иначе говоря, радиусы-векторы эпициклов Марса, Юпитера и Сатурна всегда параллельны между собой. Видно также, что верхняя планета, занимая на небе положение, противоположное Солнцу (противостояние планеты), находится в ближайшем к Земле положении — в перигее (от греческого «пери» — вблизи). В момент же соединения планеты с Солнцем, когда направления на оба светила совпадают, планета находится в апогее — в наиболее удаленной от Земли точке (от греческого «апо» — вдали).
    Как замечает А.И. Климишин, «возникает вопрос: если система Птолемея ошибочна, поскольку она основывалась на ложном представлении о неподвижной Земле как центре мироздания, то почему расчеты, проведенные на ее основе, дают правильные результаты? Ведь именно поэтому она использовалась астрономами почти 1400 лет. Ответ на поставленный вопрос очевиден: это система кинематическая. Птолемей не объяснял (да и не мог объяснить), почему движение планеты именно такое, каким он его описывал. Но каждое движение относительно. И, как это ни парадоксально звучит, Птолемей описал и смоделировал движение каждой из планет совершенно правильно — так, как его действительно видит наблюдатель с Земли. Эпицикл верхней планеты и есть отображение движения Земли вокруг Солнца (в случае нижней планеты это ее деферент)».
    Но «…с помощью данных Птолемея было трудно согласовать между собой сведения о положениях той или другой планеты, разделенных промежутком времени в несколько сотен лет. Поэтому его система все больше усложнялась, в нее вводили множество дополнительных эпициклов, что сделало ее исключительно громоздкой. Явно противоречила наблюдениям построенная Птолемеем теория движения Луны. В итоге перегруженная эпициклами модель Птолемея рухнула. Произошла революция во взглядах на мир и место Земли во Вселенной…»

 

 

Ответ #86: 28 05 2010, 14:25:59 ( ссылка на этот ответ )

В 1909 году в Париже было большое торжество: открывали памятник великому французскому натуралисту Жану Батисту Ламарку в ознаменование столетия со дня выхода в свет его знаменитого сочинения «Философия зоологии». На одном из барельефов этого памятника изображена трогательная сцена: в кресле в грустной позе сидит слепой старик — это сам Ламарк, потерявший в старости зрение, а рядом стоит молодая девушка — его дочь, которая утешает отца и обращается к нему со словами:
    «Потомство будет восхищаться вами, мой отец, оно отомстит за вас».
    Жан-Батист де Моне шевалье де Ламарк родился 1 августа 1744 года во Франции, в небольшом местечке. Он был одиннадцатым ребенком в обедневшей аристократической семье. Родители хотели сделать его священником и определили в иезуитскую школу, но после смерти отца шестнадцатилетний Ламарк оставил школу и вступил в 1761 году добровольцем в действующую армию. Там он проявил большую храбрость и получил звание офицера. После окончания войны Ламарк приехал в Париж, повреждение шеи заставило его оставить военную службу. Он стал учиться медицине. Но он больше интересовался естественными науками, в особенности ботаникой. Получая незначительную пенсию, он для заработка поступил в один из банкирских домов.
    После ряда лет усиленных занятий трудолюбивый и талантливый молодой ученый написал большое сочинение в трех томах — «Флора Франции», изданное в 1778 году. Там описано множество растений и дано руководство к их определению. Эта книга сделала имя Ламарка известным, и в следующем году его избрали членом Парижской академии наук. В Академии он с успехом продолжал заниматься ботаникой и приобрел большой авторитет в этой науке. В 1781 году его назначили главным ботаником французского короля.

    Другим увлечением Ламарка была метеорология. С 1799 по 1810 год он издал одиннадцать томов, посвященных этой науке. Занимался он физикой и химией.
    В 1793 году, когда Ламарку уже было под пятьдесят, его научная деятельность в корне изменилась. Королевский ботанический сад, где работал Ламарк, был преобразован в Музей естественной истории. Свободных кафедр ботаники в музее не оказалось, и ему предложили заняться зоологией. Трудно было пожилому человеку оставить прежнюю работу и перейти на новую, но огромное трудолюбие и гениальные способности Ламарка все преодолели. Лет через десять он сделался таким же знатоком в области зоологии, каким был в ботанике.
    Прошло немало времени, Ламарк состарился, перешагнул рубеж в шестьдесят лет. Он знал теперь о животных и растениях почти все, что было известно науке того времени. Ламарк решил написать такую книгу, в которой не описывались бы отдельные организмы, а были бы разъяснены законы развития живой природы. Ламарк задумал показать, как появились животные и растения, как они изменялись и развивались и как достигли современного состояния. Говоря языком науки, он захотел показать, что животные и растения не созданы такими, каковы они есть, а развивались в силу естественных законов природы, т. е. показать эволюцию органического мира.
    Это была нелегкая задача. Лишь немногие ученые до Ламарка высказывали догадки об изменяемости видов, но только Ламарку с его колоссальным запасом знаний удалось разрешить эту задачу. Поэтому Ламарк заслуженно считается творцом первой эволюционной теории.
    Представления об изменяемости окружающего мира (в том числе живых существ) сложились еще в античности. Об изменяемости мира размышляли, например, древнегреческие философы Гераклит Эфесский, Эмпедокл, Демокрит, древнеримский философ Тит Лукреций Кар. Позднее появилась система мировоззрения, основанного на религиозных догмах о неизменности созданного Творцом мира, — креационизм. Затем в XVII–XVIII веках сформировались новые представления об изменяемости мира и о возможности исторического изменения видов организмов, получившие название — трансформизм.
    Среди естествоиспытателей и философов-трансформистов стали известны имена Роберта Гука, Жоржа Луи Леклерка Бюффона, Дени Дидро, Жюльена Офре де Ламетри, Иоганна Вольфганга Гете, Эразма Дарвина, Этьена Жоффруа Сент-Илера. Все трансформисты признавали изменяемость видов организмов под действием изменений окружающей среды. При этом большинство трансформистов еще не имели целостной и последовательной концепции эволюции.

    Свою революционную книгу Ламарк напечатал в 1809 году и назвал ее «Философия зоологии», хотя там речь идет не только о животных, но и о всей живой природе. Не следует думать, что все интересовавшиеся в то время наукой обрадовались этой книге и поняли, что Ламарк поставил перед учеными великую задачу. В истории науки часто бывало, что великие идеи оставались современникам непонятными и получали признание лишь много лет спустя.
    Так случилось и с идеями Ламарка. Одни ученые не обратили на его книгу никакого внимания, другие посмеялись над ней. Наполеон, которому Ламарк вздумал преподнести свою книгу, так выбранил его, что тот не мог удержаться от слез.
    Под конец жизни Ламарк ослеп и, всеми забытый, умер 18 декабря 1829 года 85 лет от роду. С ним оставалась лишь его дочь Корнелия. Она заботилась о нем до самой смерти и писала под его диктовку.
    Слова Корнелии, запечатленные на памятнике Ламарку, оказались пророческими потомство действительно оценило труды Ламарка и признало его великим ученым. Но это случилось не скоро, через много лет после смерти Ламарка, после того, как появилось в 1859 году замечательное сочинение Дарвина «Происхождение видов». Дарвин подтвердил правильность эволюционной теории, доказал ее на многих фактах и заставил вспомнить о своем забытом предшественнике.
    Сущность теории Ламарка заключается в том, что животные и растения не всегда были такими, какими мы их видим теперь. В давно прошедшие времена они были устроены иначе и гораздо проще, чем теперь. Жизнь на Земле возникла естественным путем в виде очень простых организмов. С течением времени они постепенно изменялись, совершенствовались, пока не дошли до современного, знакомого нам состояния Таким образом, все живые существа происходят от непохожих на них предков, более просто и примитивно устроенных.
    Отчего же органический мир, или, иначе говоря, все животные и растения, не стоял неподвижно, как часы без завода, а двигался вперед, развивался, изменялся, как изменяется и теперь? Ламарк дал ответ и на этот вопрос.

    Он приводит два основных закона эволюции.
    «Первый закон. У всякого животного, не достигшего предела своего развития, более частое и более длительное употребление какого-нибудь органа укрепляет мало-помалу этот орган, развивает и увеличивает его и придает ему силу, соразмерную длительности употребления, между тем как постоянное неупотребление того или иного органа постепенно ослабляет его, приводит к упадку, непрерывно уменьшает его способности и, наконец, вызывает его исчезновение.
    Второй закон. Все, что природа заставила особей приобрести или утратить под влиянием условий, в которых с давних пор пребывает их порода, и, следовательно, под влиянием преобладания употребления или неупотребления той или иной части (тела), — все это природа сохраняет путем размножения у новых особей, которые происходят от первых, при условии, если приобретенные изменения общи обоим полам или тем особям, от которых новые особи произошли».
    Совершенствуя и уточняя свою теорию, Ламарк во «Введении» к «Естественной истории беспозвоночных» дал новую, несколько расширенную редакцию своих законов эволюции.
    «1. Жизнь свойственными ей силами стремится непрерывно увеличивать объем всех своих тел и расширять размеры их до пределов, установленных ею.
    2. Образование нового органа в теле животного происходит от новой появившейся и продолжающей чувствоваться потребности и от нового движения, которое эта потребность порождает и поддерживает.

    3. Развитие органов и сила их действия всегда зависит от употребления этих органов.
    4. Все, что приобретено, отмечено или изменено в организации индивидуумов в течение их жизни, сохраняется путем генерации и передается новым видам, которые происходят от тех, кто испытал это изменение».
    Ламарк иллюстрировал свое теоретическое построение примерами.
    «Птица, которую влечет к воде потребность найти добычу, необходимую ей для поддержания жизни, растопыривает пальцы ног, когда хочет грести и двигаться по поверхности воды. Благодаря этим непрерывно повторяющимся движениям пальцев кожа, соединяющая пальцы у их оснований, приобретает привычку растягиваться. Так, с течением времени образовались те широкие перепонки между пальцами ног, которые мы видим теперь у уток, гусей и т д.».
    «…Береговая птица, не любящая плавать, но которая все же вынуждена отыскивать пищу у самого берега, постоянно подвергается опасности погрузиться в ил. И вот, стремясь избегнуть необходимости окунать тело в воду, птица делает всяческие усилия, чтобы вытянуть и удлинить свои ноги. В результате длительной привычки, усвоенной данной птицей и прочими особями ее породы, постоянно вытягивать и удлинять ноги, все особи этой породы как бы стоят на ходулях, так как мало-помалу у них образовались длинные голые ноги…»
    Как отмечает Николай Иорданский: «Ламарк впервые выделил два самых общих направления эволюции: восходящее развитие от простейших форм жизни ко все более сложным и совершенным и формирование у организмов приспособлений в зависимости от изменений внешней среды (развитие „по вертикали“ и „по горизонтали“). Как ни странно, обсуждая взгляды Ламарка, современные биологи чаще вспоминают только вторую часть его теории (развитие приспособлений у организмов), которая была очень близка ко взглядам трансформистов — предшественников и современников Ламарка, и оставляют в тени её первую часть. Однако именно идея восходящей, или прогрессивной, эволюции — наиболее оригинальная часть теории Ламарка. Ученый полагал, что историческое развитие организмов имеет не случайный, а закономерный характер и происходит в направлении постепенного и неуклонного совершенствования, повышения общего уровня организации, которое Ламарк назвал градацией. Движущей силой градаций Ламарк считал „стремление природы к прогрессу“, изначально присущее всем организмам и заложенное в них Творцом…

    …Ламарк считал, что изменения, которые растения и животные приобретают в течение жизни, наследственно закрепляются и передаются потомкам; ученые называют их модификациями.
    Современники сочли доводы Ламарка противоречивыми и шаткими и не приняли его теорию. Однако некоторые идеи Ламарка до сих пор привлекают внимание леченых и в XX столетии дали начало нескольким неоламаркистским концепциям».

 

 

Ответ #87: 28 05 2010, 20:27:50 ( ссылка на этот ответ )

Отдельные наиболее прозорливые умы и ранее высказывали смутные догадки о существовании каких-то мельчайших, не видимых простым глазом существ, повинных в распространении и возникновении заразных болезней. Но все эти догадки так и оставались только догадками. Ведь никто никогда не видел таких мелких организмов.
    Первым, кому выпала великая честь приоткрыть завесу в неведомый дотоле мир живых существ — микроорганизмов, которые играют огромную роль в природе и в жизни человека, стал голландец Левенгук.

    Антони ван Левенгук (1632–1723) родился в голландском городе Делфте в семье Антонизона ван Левенгука и Маргарет Бел ван ден Берч. Детство его было нелегким. Никакого образования он не получил. Отец, небогатый ремесленник, отдал мальчика на учение к суконщику. Вскоре Антони стал самостоятельно торговать мануфактурой.
    Затем Левенгук был кассиром и бухгалтером в одном из торговых учреждений в Амстердаме. Позднее он служил стражем судебной палаты в родном городе, что по современным понятиям соответствует должностям дворника, истопника и сторожа одновременно. Знаменитым Левенгука сделало его необычное увлечение.
    Еще в молодости Антони научился изготовлять увеличительные стекла, увлекся этим делом и достиг в нем изумительного искусства. На досуге он любил шлифовать оптические стекла и достиг в этом виртуозного мастерства. В те времена самые сильные линзы увеличивали изображение лишь в двадцать раз. «Микроскоп» Левенгука — это, по существу, очень сильная лупа. Она увеличивала до 250–300 раз. Эти замечательные линзы и оказались окном в новый мир.
    В начале 1673 года доктор Грааф прислал письмо на имя секретаря Лондонского Королевского общества. В этом письме он сообщал «о проживающем в Голландии некоем изобретателе по имени Антони ван Левенгук, изготавливающем микроскопы, далеко превосходящие известные до сих пор микроскопы Евстахия Дивины».
    Наука должна быть благодарна доктору Граафу за то, что он, узнав о Левенгуке, успел написать свое письмо: в августе того же года Грааф в возрасте 32 лет умер. Возможно, если бы не он — мир так и не узнал бы о Левенгуке, талант которого, лишенный поддержки, зачах бы, а его открытия были бы сделаны еще раз другими, но уже много позднее. Королевское общество связалось с Левенгуком, и началась переписка.
    Проводя свои исследования без всякого плана, ученый-самоучка сделал множество важных открытий. В то время биологическая наука находилась на очень низкой ступени развития. Основные законы, управляющие развитием и жизнью растений и животных, еще не были известны. Мало знали ученые и о строении тела животных и человека. И множество удивительных тайн природы раскрывалось перед взором каждого наблюдательного натуралиста, обладавшего талантом и упорством.

    Левенгук был одним из наиболее выдающихся исследователей природы. Он первый подметил, как кровь движется в мельчайших кровеносных сосудах — капиллярах Левенгук увидел, что кровь — это не какая-то однородная жидкость, как думали его современники, а живой поток, в котором движется великое множество мельчайших телец. Теперь их называют эритроцитами. В одном кубическом миллиметре крови находится около 4–5 миллионов эритроцитов.
    Очень важно и другое открытие Левенгука: в семенной жидкости он впервые увидел сперматозоиды — те маленькие клетки с хвостиками, которые, внедряясь в яйцеклетку, оплодотворяют ее, в результате чего возникает новый организм.
    Рассматривая под своей лупой тоненькие пластинки мяса, Левенгук обнаружил, что мясо, а точнее говоря, мышцы, состоит из микроскопических волоконец.
    Левенгук стал одним из первых, кто начал проводить опыты на себе. Это из его пальца шла кровь на исследование, и кусочки своей кожи он помещал под микроскоп, рассматривая ее строение на различных участках тела, и подсчитывая количество сосудов, которые ее пронизывают. Изучая размножение таких малопочтенных насекомых, как вши, он помещал их на несколько дней в свой чулок, терпел укусы, но узнал, в конце концов, каков у его подопечных приплод.
    Он изучал выделения своего организма в зависимости от качества съеденной пищи. Левенгук испытывал на себе и действие лекарств. Заболевая, он отмечал все особенности течения своей болезни, а перед смертью скрупулезно фиксировал угасание жизни в своем теле.
    Но главным было то, что в 1673 году Левенгук первым из людей увидел микробов. Долгие, долгие часы он рассматривал в микроскоп все, что попадалось на глаза: кусочек мяса, каплю дождевой воды или сенного настоя, хвостик головастика, глаз мухи, сероватый налет со своих зубов и т. п. Каково же было его изумление, когда в зубном налете, в капле воды и многих других жидкостях он увидел несметное множество живых существ. Они имели вид и палочек, и спиралей, и шариков. Иногда эти существа обладали причудливыми отростками или ресничками. Многие из них быстро двигались.

    Вот что писал Левенгук в лондонское королевское общество о своих наблюдениях: «После всех попыток узнать, какие силы в корне (хрена — А) действуют на язык и вызывают его раздражение, я положил приблизительно пол-унции корня в воду: в размягченном состоянии его легче изучать. Кусочек корня оставался в воде около трех недель. 24 апреля 1673 года я посмотрел на эту воду под микроскопом и с большим удивлением увидел в ней огромное количество мельчайших живых существ.
    Некоторые из них в длину были раза в три-четыре больше, чем в ширину, хотя они и не были толще волосков, покрывающих тело вши… Другие имели правильную овальную форму. Был там еще и третий тип организмов, наиболее многочисленный, — мельчайшие существа с хвостиками». Так свершилось одно из великих открытий, положившее начало микробиологии — науке о микроскопических организмах.
    «В своих наблюдениях я провел времени больше, чем некоторые думают, — писал Левенгук. — Однако занимался ими с наслаждением и не заботился о болтовне тех, кто об этом так шумит: „Зачем затрачивать столько труда, какая от него польза?“, но я пишу не для таких, а только для любителей знаний».
    Не известно точно, мешал ли кто деятельности Левенгука, но однажды он написал: «Все мои старания направлены к одной только цели — сделать очевидной истину и приложить полученный мной небольшой талант к тому, чтобы отвлечь людей от старых и суеверных предрассудков».
    В 1680 году научный мир официально признал достижения Левенгука и избрал его действительным и равноправным членом Лондонского королевского общества — несмотря на то, что он не знал латыни и по тогдашним правилам не мог считаться настоящим ученым. Позднее он был принят и во Французскую академию наук.
    Письма Левенгука в Королевское общество, к ученым, к политическим и общественным деятелям своего времени — Лейбницу, Роберту Гуку, Христиану Гюйгенсу — были изданы на латинском языке еще при его жизни и заняли четыре тома. Последний вышел в 1722 году, когда Левенгуку было 90 лет, за год до его смерти.

    Левенгук так и вошел в историю как один из крупнейших экспериментаторов своего времени. Восславляя эксперимент, он за шесть лет до смерти написал пророческие слова: «Следует воздержаться от рассуждений, когда говорит опыт».
    Со времени Левенгука и до наших дней микробиология добилась большого прогресса. Она выросла в широко разветвленную область знания и имеет очень большое значение и для всей человеческой практики (медицины, сельского хозяйства, промышленности), и для познания законов природы. Десятки тысяч исследователей во всех странах мира неутомимо изучают огромный и многообразный мир микроскопических существ. И все они чтят Левенгука — выдающегося голландского биолога, с которого началась история микробиологии.

 

 

Ответ #88: 29 05 2010, 00:42:48 ( ссылка на этот ответ )

Ясные и четкие идеи об атомном строении электричества появились у В. Вебера, которые он развивал их в ряде работ, начиная с 1862 года: «При всеобщем распространении электричества можно принять, что с каждым весомым атомом связан электрический атом». Он развивает в связи с этим воззрения на проводимость тока в металлах, которые отличаются от электронных только тем, что он считает подвижными атомы положительного электричества. Им была высказана и мысль о молекулярном истолковании тепла Джоуля—Ленца:
    «Живая сила всех содержащихся в проводнике молекулярных токов увеличивается при прохождении тока пропорционально сопротивлению и пропорционально квадрату силы тока».

    Эти и подобные им высказывания Вебера дали повод А.И. Ба-чинскому назвать Вебера одним из творцов электронной теории, а О.Д. Хвольсону поместить его имя в начальном параграфе главы об электронной теории проводимости металлов. Но надо заметить, что Вебер еще не связывает своего «электрического атома» с конкретными фактами электролиза. Эта связь впервые была установлена Максвеллом в первом томе его «Трактата». Но Максвелл не стал развивать этой важной идеи. Наоборот, он утверждал, что идея молекулярного заряда не удержится в науке.
    В 1874 году ирландский физик Стоней на заседании Британской ассоциации обратил внимание на существование в природе трех «естественных единиц»: скорости света, постоянной тяготения и заряда «электрического атома». По поводу этой последней единицы он сказал:
    «Наконец природа одарила нас в явлениях электролиза вполне определенным количеством электричества, не зависимым от тел, с которыми оно связано». Стоней дал оценку этого заряда, разделив количество электричества, выделяемое при разложении кубического сантиметра водорода, на число его атомов по тогдашним данным, и получил значение порядка 10 в минус двадцатой степени электромагнитных единиц. Этот электрический атом Стоней предложил назвать «электроном».
    5 апреля 1881 года Гельмгольц в своей известной речи заявил: «Если мы допускаем существование химических атомов, то мы принуждены заключить отсюда далее, что также и электричество, как положительное, так и отрицательное, разделяется на определенные элементарные количества, которые играют роль атомов электричества».
    В 1869 году Гитторф, получив в разрядной трубке вакуум со степенью разрежения ниже одного миллиметра, заметил, что темное катодное пространство быстро распространяется по всей трубке, вследствие чего стенки трубки начинают сильно флюоресцировать. Он подметил, что свечения трубки смещаются под действием магнита.
    Через десять лет после наблюдений Гитторфа появились работы В. Крукса. По предположениям Крукса, частичка лучистой материи выбрасывается из электродов с огромной скоростью. Темное катодное пространство — это пространство, в котором свободно движутся отрицательные молекулы газа, летящие от катода и задерживаемые на его границе встречными положительными молекулами. Однако немецкие физики не приняли точку зрения Крукса. Э. Гольдштейн в 1880 году показал, что отождествление размеров темного катодного пространства с длиной свободного пробега неправильно. Он показал, что катодные лучи вовсе не заканчиваются на границе темного слоя, они при больших разрежениях пронизывают и светящееся пространство анода.

    Австрийский ученый В.Ф. Гинтль в том же году высказал гипотезу, что катодные лучи представляют собой поток металлических частиц, вырываемых из катода электрическим током, которые движутся прямолинейно. Эту точку зрения поддержал и развил далее Пулуа. В том же 1880 году Э. Видеман отождествил катодные лучи с эфирными колебаниями столь короткой длины волны. По его мнению, они не производят светового действия; однако, падая на весомую материю, замедляются и превращаются в видимый свет.
    Решающее значение в укреплении эфирной волновой теории катодных лучей сыграли опыты Ленарда. Он убедительно доказал, что катодные лучи могут выйти наружу при сохранении вакуума в трубке, т. е. эти лучи не могут быть частичками газа, как предполагал Крукс. Но этого мало. Катодные лучи в воздухе производят люминисцирую-щее и фотографическое действие. Ленарду удалось получить в выпущенном им потоке фотографию предмета, закрытого герметически алюминиевой коробочкой с тонкими стенками. Наблюдая отклонение выпущенного пучка магнитом, он установил, что это отклонение не зависит от рода газа, а главное, что остается часть лучей, не отклоненных магнитом.
    Ленард был первым физиком, наблюдавшим действие рентгеновских лучей и даже получившим первую рентгенограмму. Но он не сумел понять в должной мере своего открытия и характеризовал его как доказательство волновой природы катодных лучей. Его эксперимент таил в себе большие возможности, которые ученый не использовал.
    Теория Видемана — Герца — Ленарда была сильно поколеблена в 1895 году опытом Перрена (1870–1942), который попытался обнаружить заряд катодных лучей. С этой целью он в разрядной трубке поместил против катода фарадеевский цилиндр, соединенный с электрометром. При прохождении разряда цилиндр зарядился отрицательно. Отсюда Перрен сделал вывод, что «перенос отрицательных зарядов неотделим от катодных лучей».
    Перрен с несомненностью установил перенос заряда катодными лучами и полагал, что этот факт трудно совместить с теорией вибраций, тогда как с теорией истечения он согласуется очень хорошо. Поэтому он полагал, что «если теория истечения может опровергнуть все возражения, которые она вызвала, она должна быть признана действительно пригодной».
    Однако для того чтобы опровергнуть все возражения, необходимо было коренным образом изменить взгляды на строение материи и допустить в природе существование частиц меньших атомов.

    В историю науки английский физик Джозеф Томсон (1856–1940) вошел как человек, открывший электрон. Однажды он сказал: «Открытия обязаны остроте и силе наблюдательности, интуиции, непоколебимому энтузиазму до окончательного разрешения всех противоречий, сопутствующих пионерской работе».
    Джозеф Джон Томсон родился в Манчестере. Здесь, в Манчестере, он окончил Оуэнс-колледж, а в 1876–1880 годах учился в Кембриджском университете в знаменитом колледже святой Троицы (Тринити-колледж). В январе 1880 года Томсон успешно выдержал выпускные экзамены и начал работать в Кавендишской лаборатории.
    Первая его статья, опубликованная в 1880 году, была посвящена электромагнитной теории света. В следующем году появились две работы, из которых одна положила начало электромагнитной теории массы.
    Томсон был одержим экспериментальной физикой. Одержим в лучшем смысле этого слова. Научные успехи Томсона были высоко оценены директором лаборатории Кавендиша Рэлеем. Уходя в 1884 году с поста директора, он, не колеблясь, рекомендовал своим преемником Томсона.
    С 1884 по 1919 год Томсон руководил лабораторией Кавендиша. За это время она превратилась в крупный центр мировой физики, в международную школу физиков. Здесь начали свой научный путь Резерфорд, Бор, Ланжевен и многие другие, в том числе и русские, ученые.
    Программа исследований Томсона была широкой: вопросы прохождения электрического тока через газы, электронная теория металлов, исследование природы различного рода лучей…

    Взявшись за исследование катодных лучей, Томсон прежде всего решил проверить, достаточно ли тщательно были поставлены опыты его предшественниками, добившимися отклонения лучей электрическими полями. Он задумывает повторный эксперимент, конструирует для него специальную аппаратуру, следит сам за тщательностью исполнения заказа, и ожидаемый результат налицо.
    В трубке, сконструированной Томсоном, катодные лучи послушно притягивались к положительно заряженной пластинке и явно отталкивались от отрицательной. То есть вели себя так, как и полагалось потоку быстролетящих крошечных корпускул, заряженных отрицательным электричеством. Превосходный результат! Он мог, безусловно, положить конец всем спорам о природе катодных лучей. Но Томсон не считал свое исследование законченным. Определив природу лучей качественно, он хотел дать точное количественное определение и составляющим их корпускулам.
    Окрыленный первым успехом, он сконструировал новую трубку: катод, ускоряющие электроды в виде колечек и пластинки, на которые можно было подавать отклоняющее напряжение. На стенку, противоположную катоду, он нанес тонкий слой вещества, способного светиться под ударами налетающих частиц. Получился предок электроннолучевых трубок, так хорошо знакомых нам в век телевизоров и радиолокаторов.
    Цель опыта Томсона заключалась в том, чтобы отклонить пучок корпускул электрическим полем и компенсировать это отклонение полем магнитным. Выводы, к которым он пришел в результате эксперимента, были поразительны.
    Во-первых, оказалось, что частицы летят в трубке с огромными скоростями, близкими к световым. А во-вторых, электрический заряд, приходившийся на единицу массы корпускул, был фантастически большим. Что же это были за частицы: неизвестные атомы, несущие на себе огромные электрические заряды, или крохотные частицы с ничтожной массой, но зато и с меньшим зарядом?
    Далее он обнаружил, что отношение удельного заряда к единице массы есть величина постоянная, не зависящая ни от скорости частиц, ни от материала катода, ни от природы газа, в котором происходит разряд. Такая независимость настораживала. Похоже, что корпускулы были какими-то универсальными частицами вещества, составными частями атомов.

    «После длительного обсуждения экспериментов — пишет в своих воспоминаниях Томпсон, — оказалось, что мне не избежать следующих заключений:
    1. Что атомы не неделимы, так как из них могут быть вырваны отрицательно заряженные частицы под действием электрических сил, удара быстро движущихся частиц, ультрафиолетового света или тепла.
    2. Что эти частицы все одинаковой массы, несут одинаковый заряд отрицательного электричества, от какого бы рода атомов они ни происходили, и являются компонентами всех атомов.
    3. Масса этих частиц меньше, чем одна тысячная массы атома водорода. Я вначале назвал эти частицы корпускулами, но они теперь называются более подходящим именем „электрон“».
    Томсон принялся за расчеты. Прежде всего, следовало определить параметры таинственных корпускул, и тогда, может быть, удастся решить, что они собой представляют. Результаты расчетов показали: сомнений нет, неизвестные частицы не что иное, как мельчайшие электрические заряды — неделимые атомы электричества, или электроны.
    29 апреля 1897 года в помещении, где уже более двухсот лет происходили заседания Лондонского королевского общества, состоялся его доклад. Слушатели были в восторге. Восторг присутствующих объяснялся вовсе не тем, что коллега Дж. Дж. Томсон столь убедительно раскрыл истинную природу катодных лучей. Дело обстояло гораздо серьезнее. Атомы, наипервейшие кирпичики материи, перестали быть элементарными круглыми зернами, непроницаемыми и неделимыми, частицами без всякого внутреннего строения… Если из них могли вылетать отрицательно заряженные корпускулы, значит, и представлять собой атомы должны были какую-то сложную систему, систему, состоящую из чего-то заряженного положительным электричеством и из отрицательно заряженных корпускул — электронов.

    Теперь стали видны и дальнейшие, самые необходимые направления будущих поисков. Прежде всего, конечно, необходимо было определить точно заряд и массу одного электрона. Это позволило бы уточнить массы атомов всех элементов, рассчитать массы молекул, дать рекомендации к правильному составлению реакций.
    В 1903 году в той же Кавендишской лаборатории у Томсона Г. Вильсон внес важное изменение в метод Томсона. В сосуде, в котором производится быстрое адиабатическое расширение ионизируемого воздуха, помещены пластинки конденсатора, между которыми можно создавать электрическое поле и наблюдать падение облака, как при наличии поля, так и в его отсутствии. Измерения Вильсона дали значение для заряда электрона как 3,1 умноженную на 10 в минус десятой степени абс. эл. ед.
    Метод Вильсона был использован многими исследователями, в том числе и студентами Петербургского университета Маликовым и Алексеевым, которые нашли заряд равным 4,5 умноженную на 10 в минус десятой степени абс. эл. ед.
    Это был наиболее приближающийся к истинному значению результат из всех полученных до того, как Милликен начал с 1909 года измерения с отдельными каплями.
    Так был открыт и измерен электрон — универсальная частица атомов, первая из открытых физиками так называемых «элементарных частиц».
    Это открытие дало возможность физикам, прежде всего, по-новому поставить вопрос об изучении электрических, магнитных и оптических свойств вещества.

 

 

Ответ #89: 29 05 2010, 11:17:43 ( ссылка на этот ответ )

Основные понятия грамматики окончательно сформировались в Александрии. «Синтаксис» Аполлония Дискола (II век) и грамматика Дионисия Фракийского считались образцовыми. Греческие грамматики позднеантичного и византийского времени в основном сочинялись на их основе.
    Идеи александрийцев достаточно быстро проникли и в Рим. В I веке до нашей эры там появляется первый крупный грамматист Марк Теренций Варрон (116—27 годы до нашей эры).
    Варрон и другие римские ученые достаточно легко и лишь с минимальными изменениями приспособили греческие схемы описания к латинскому языку. Окончательно античная традиция была зафиксирована в двух позднеантичных латинских грамматиках: грамматике Доната (III–IV века) и многотомной грамматике Присциана (первая половина VI века). На протяжении всего Средневековья две грамматики служили образцами.

    Как отмечает В.М. Алпатов: «После распада Римской империи европейская традиция окончательно распалась на два варианта: восточный, греческий, и западный, латинский, которые уже развивались вне всякой связи друг с другом. В течение нескольких веков средневековая лингвистика как на Востоке, так и на Западе мало внесла нового в науку о языке. Новый этап развития западноевропейской лингвистики начался с появлением в ХН-ХШ веках философских грамматик, стремившихся не описывать, а объяснять те или иные языковые явления. Сложилась школа модистов, работавшая с начала XIII века по начало XIV века; самый знаменитый из модистов — Томас Эрфуртский, написавший свой труд в первом десятилетии XIV века. Модисты интересовались не столько фактами латинского языка (где они в основном следовали Присциану), сколько общими свойствами языка и его отношениями к внешнему миру и к миру мыслей. Модисты впервые пытались установить связь между грамматическими категориями языка и глубинными свойствами вещей. Модисты внесли также вклад в изучение синтаксиса, недостаточно разработанного в античной науке…
    …После Томаса Эрфуртского в течение примерно двух столетий теоретический подход к языку не получил значительного развития. Однако именно в это время шло постепенное становление нового взгляда на языки, который в конечном итоге выделил европейскую лингвистическую традицию из всех остальных. Появилась идея о множественности языков и о возможности их сопоставления».
    В XVI веке после некоторого перерыва теория языка вновь начинает развиваться. Так французский ученый Пьер де ла Раме (Рамус) (1515–1672) завершил создание понятийного аппарата и терминологии синтаксиса, начатое ранее модистами. Надо отметить, что именно ему принадлежит дожившая до наших дней система членов предложения. Испанец Ф. Санчес (Санкциус) (1550–1610) в конце шестнадцатого столетия создает теоретическую грамматику, написанную еще на латыни, но уже учитывающую материал различных языков. У Санчеса впервые появляются и некоторые идеи, потом отразившиеся в грамматике Пор-Рояля.
    Языкознание XVII века в основном шло в области теории двумя путями: дедуктивным и индуктивным. Самым известным и популярным образцом индуктивного подхода, связанного с попыткой выявить общие свойства реально существующих языков, стала так называемая грамматика Пор-Рояля. Она была впервые издана в 1660 году. Характерно, что имена ее авторов Антуана Арно (1612–1694) и Клода Лансло (1615–1695) не были указаны.
    Как пишут авторы, стимулом к ее написанию послужил «путь поиска разумных объяснений многих явлений, либо общих для всех языков, либо присущих лишь некоторым из них».
    Авторы грамматики исходили из существования общей логической основы языков, от которой конкретные языки отклоняются в той или иной степени. От модистов авторы «Грамматики Пор-Рояля» отличались не столько самой идеей основы языков, сколько пониманием того, что собой эта основа представляет.

    В течение XVIII века продолжали составляться и общие рациональные грамматики в духе «Грамматики Пор-Рояля». Однако такие грамматики не содержали особо новых идей.
    Наконец, достаточно разработанную теорию происхождения и развития языка для тех лет предложил Э. Кондильяк. По его мнению, язык на ранних этапах развивался от бессознательных криков к сознательному их использованию. Получив контроль над звуками, человек смог контролировать и свои умственные операции.
    Французский философ развил и концепцию о едином пути развития языков. Но при этом языки проходят этот путь с разной скоростью а, потому одни языки совершеннее других.
    По выражению В. Томсена, весь XVIII век сравнительно-исторический метод «витал в воздухе». Но нужен был некоторый толчок, который стал бы отправной точкой для кристаллизации метода. Таким толчком стало в конце века открытие санскрита. После появления этого недостающего звена началось бурное развитие исследований в области сопоставления европейских языков с санскритом и между собой.
    Всего через три десятилетия после открытия санскрита, в 1816 году, появляется первая вполне научная работа, заложившая основы сравнительно-исторического метода, то была книга Франца Боппа (1791 — 1 867). В 1818 году выходит в свет сочинение датчанина Расмуса Раска (1787–1832) «Исследование в области древнесеверного языка, или про-Псхождение исландского языка». Еще через год печатается первый том «Немецкой грамматики» Якоба Гримма (1785–1863). В 1820 году выходит книга русского ученого А.Х. Востокова — «Рассуждение о славянском языке». В этих сочинениях впервые формировался сравнительно-исторический метод.
    Однако общетеоретический, философский подход к языку в первой половине XIX века достиг наивысшего развития в теории Гумбольдта. Вильгельм фон Гумбольдт (1767–1835) был одним из крупнейших лингвистов-теоретиков в мировой науке. О его роли в языкознании метко сказал В А Звегинцев: «Выдвинув оригинальную концепцию природы языка и подняв ряд фундаментальных проблем, которые и в настоящее время находятся в центре оживленных дискуссий, он, подобно непокоренной горной вершине, возвышается над теми высотами, которых удалось достичь другим исследователям».

    «В. фон Гумбольдт был многосторонним человеком с разнообразными интересами, — пишет В.М. Алпатов. — Он был прусским государственным деятелем и дипломатом, занимал министерские посты, играл значительную роль на Венском конгрессе, определившем устройство Европы после разгрома Наполеона. Он основал Берлинский университет, ныне носящий имена его и его брата, знаменитого естествоиспытателя и путешественника А. фон Гумбольдта. Ему принадлежат труды по философии, эстетике и литературоведению, юридическим наукам и др. Его работы по лингвистике не столь уж велики по объему, однако в историю науки он вошел в первую очередь как языковед-теоретик…
    …Лингвистикой В. фон Гумбольдт в основном занимался в последние полтора десятилетия жизни, после отхода от активной государственной и дипломатической деятельности Одной из первых по времени работ был его доклад „О сравнительном изучении языков применительно к различным эпохам их развития“, прочитанный в Берлинской академии наук в 1820 году. Несколько позже появилась другая его работа — „О возникновении грамматических форм и их влиянии на развитие идей“. В последние годы жизни ученый работал над трудом „О языке кави на острове Ява“, который он не успел завершить. Была написана его вводная часть „О различии строения человеческих языков и его влиянии на духовное развитие человечества“, опубликованная посмертно в 1848 году. Это безусловно главный лингвистический труд В. фон Гумбольдта, в котором наиболее полно изложена его теоретическая концепция».
    Уже в самом начале XIX века Гумбольдт ставит задачу «превращения языкознания в систематическую науку».
    «Лингвистическое учение Гумбольдта, — пишет И.Г. Зубова, — возникло в русле идей немецкой классической философии. Гумбольдт взял на вооружение и применил к анализу языка основное ее достижение — диалектический метод, в соответствии с которым мир рассматривается в развитии как противоречивое единство противоположностей, как целое, пронизанное всеобщими связями и взаимными переходами отдельных явлений и их сторон, как система, элементы которой определяются по месту, занимаемому в ее рамках. Гумбольдт развивает применительно к языку идеи деятельности, деятельного начала в человеке, активности человеческого сознания, в том числе деятельного характера созерцания и бессознательных процессов, творческой роли воображения, фантазии в процессе познания. Благодаря возросшему интересу к природе, к природному (естественному) началу в человеке, к чувственности в философии утверждаются идеи единства чувственного и рационального познания. Эти идеи, так же как идеи единства сознательного и бессознательного в познавательной, творческой деятельности, нашли выражение и в лингвистической концепции Гумбольдта. Характерный для романтиков повышенный интерес к каждой личности сочетается у Гумбольдта, так же как у других философов того времени, с признанием социальной природы человека, с идеей единства человеческой природы».
    Ученый выделяет четыре ступени или стадии развития языков: «На низшей ступени грамматическое обозначение осуществляется при помощи оборотов речи, фраз и предложений… На второй ступени грамматическое обозначение осуществляется при помощи устойчивого порядка слов и при помощи слов с неустойчивым вещественным и формальным значением… На третьей ступени грамматическое обозначение осуществляется при помощи аналогов форм… На высшей ступени грамматическое обозначение осуществляется при помощи подлинных форм, флексий и чисто грамматических форм».
    При этом он считает, что язык есть творение не отдельного человека, а принадлежит всегда целому народу. Позднейшие поколения получают его от поколений минувших.

    По Гумбольдту, «язык тесно переплетен с духовным развитием человечества и сопутствует ему на каждой ступени его локального прогресса или регресса, отражая в себе каждую стадию культуры». Он считает, что по сравнению с другими видами культуры язык наименее связан с сознанием. Подобная идея о полностью бессознательном развитии языка и невозможности вмешательства в него позднее получила развитие у Соссюра и других лингвистов.
    Без языка человек не может ни мыслить, ни развиваться: «Создание языка обусловлено внутренней потребностью человечества. Язык — не просто внешнее средство общения людей, поддержания общественных связей, но заложен в самой природе человека и необходим для развития его духовных сил и формирования мировоззрения, а этого человек только тогда сможет достичь, когда свое мышление поставит в связь с общественным мышлением».
    По мнению ученого, дух народа и язык народа неразрывны: «Духовное своеобразие и строение языка народа пребывают в столь тесном слиянии друг с другом, что коль скоро существует одно, то из этого обязательно должно вытекать другое…»
    Однако нельзя понять, как дух народа реализуется в языке, без правильного понятия, что же такое язык. Гумбольдт дает определение языка, ставшего знаменитым: «По своей действительной сущности язык есть нечто постоянное и вместе с тем в каждый данный момент преходящее. Даже его фиксация посредством письма представляет собой далеко не совершенное мумиеобразное состояние, которое предполагает воссоздание его в живой речи. Язык есть не продукт деятельности (ergon), а деятельность (energeia). Его истинное определение может быть поэтому только генетическим. Язык представляет собой постоянно возобновляющуюся работу духа, направленную на то, чтобы сделать артикулируемый звук пригодным для выражения мысли. В подлинном и действительном смысле под языком можно понимать только всю совокупность актов речевой деятельности. В беспорядочном хаосе слов и правил, который мы по привычке именуем языком, наличествуют лишь отдельные элементы, воспроизводимые — и притом неполно — речевой деятельностью; необходима все повторяющаяся деятельность, чтобы можно было познать сущность живой речи и составить верную картину живого языка, по разрозненным элементам нельзя познать то, что есть высшего и тончайшего в языке; это можно постичь и уловить только в связной речи… Расчленение языка на слова и правила — это лишь мертвый продукт научного анализа. Определение языка как деятельности духа совершенно правильно и адекватно уже потому, что бытие духа вообще может мыслиться только в деятельности и в качестве таковой».
    По Гумбольдту, язык состоит из материи и формы. При этом именно форма составляет суть языка: «Постоянное и единообразное в этой деятельности духа, возвышающей членораздельный звук до выражения мысли, взятое во всей совокупности своих связей и систематичности, и составляет форму языка». Форма «представляет собой сугубо индивидуальный порыв, посредством которого тот или иной народ воплощает в языке свои мысли и чувства».
    Гумбольдт особо выделял творческий характер языка: «В языке следует видеть не какой-то материал, который можно обозреть в его совокупности или передать часть за частью, а вечно порождающий себя организм, в котором законы порождения определенны, но объем и в известной мере также способ порождения остаются совершенно произвольными. Усвоение языка детьми — это не ознакомление со словами, не простая закладка их в памяти и не подражательное лепечущее повторение их, а рост языковой способности с годами и упражнением». В этих фразах уже есть многое из того, к чему в последние десятилетия пришла наука о языке, показателен сам термин «порождение».

    «Безусловно, — пишет В.М. Алпатов, — многое у В. фон Гумбольдта устарело. Особенно это относится к его исследованию конкретного языкового материала, часто не вполне достоверного. Лишь историческое значение имеют его идеи стадиальности и попытки выделять более или менее развитые языки. Однако можно лишь удивляться тому, сколько идей, которые рассматривала лингвистика на протяжении последующих более чем полутора столетий, в том или ином виде высказано у ученого первой половины XIX века. Безусловно, многие проблемы, впервые поднятые В. фон Гумбольдтом, крайне актуальны, а к решению некоторых из них наука лишь начинает подступаться».

 

 

Страниц: 1 ... 16 17 18  | ВверхПечать