Максимум Online сегодня: 591 человек.
Максимум Online за все время: 4395 человек.
(рекорд посещаемости был 29 12 2022, 01:22:53)


Всего на сайте: 24816 статей в более чем 1761 темах,
а также 358565 участников.


Добро пожаловать, Гость. Пожалуйста, войдите или зарегистрируйтесь.
Вам не пришло письмо с кодом активации?

 

Сегодня: 27 04 2024, 05:24:29

Сайт adonay-forum.com - готовится посетителями и последователями Центра духовных практик "Адонаи.

Страниц: 1 2 3 ... 18 | Вниз

Опубликовано : 29 04 2010, 02:57:29 ( ссылка на этот ответ )


Причина могущества науки — в ее всеобщности: ее законы свободны от произвола отдельных людей, она отражает лишь коллективный их опыт, независимый от возраста, национальности и настроения...


Роджер Бэкон

 

 

Ответ #1: 29 04 2010, 17:18:16 ( ссылка на этот ответ )

ОСНОВЫ АНАТОМИИ

   
    В Средние века внимание к телу считалось греховным и преследовалось; вскрытия были запрещены или ограничивались единичными случаями. При таких условиях изучение анатомии не могло получить развития. Наоборот, культура эпохи Возрождения, поставив в центре внимания человека, начала изучать его тело. Анатомией занимались не только врачи, но и ученые, по своей основной деятельности далеко от нее стоящие. Так, Леонардо да Винчи был и анатомом.
    В сотрудничестве с врачами Леонардо в течение многих лет производил в больницах вскрытия и анатомические зарисовки. Дань анатомии отдали и многие другие художники данной эпохи — Микеланджело, Альбрехт Дюрер.
    Стремление овладеть природой, подчинить ее себе, открыть ее тайны не могло не выдвинуть и задачи преодоления болезней. А это для передовых людей данной эпохи значило изучить реально, на практике, в чем выражается болезнь, какие явления она вызывает. Значит, прежде всего, нужно было изучить тело человека.
    Создателем современной анатомии и основателем школы анатомов справедливо считается бельгиец (фламандец) Везалий.

    Андреас Везалий (настоящая фамилия Виттинг) (1514–1564) родился в Брюсселе Андреас вырос в семье потомственных медиков. Врачами были его дед и прадед, а отец служил аптекарем при дворе императора Карла V. Интересы окружающих, несомненно, повлияли на интересы и стремления юного Везалия. Учился Андреас сначала в школе, а затем в университете города Лувена, где получил разностороннее образование, изучил греческий и латинский языки, благодаря чему мог знакомиться с трудами ученых уже в юные годы. Очевидно, он прочел о медицине немало книг древних и современных ему ученых, так как труды его говорят о глубоких знаниях. Везалий самостоятельно, из костей казненного, собрал полный скелет человека. Это было первое анатомическое пособие в Европе.
    С каждым годом все больше проявлялся интерес Везалия к изучению медицины, к анатомическим исследованиям. В свободное от учения время он у себя дома тщательно препарировал тела животных: мышей, кошек, собак, — с увлечением изучал строение их организма.
    Стремясь совершенствовать свои знания в области медицины, особенно анатомии, Везалий в возрасте семнадцати лет направился в университет Монпелье, а в 1533 году он впервые появился на медицинском факультете Парижского университета, чтобы слушать лекции прославленного анатома Сильвия. Юный Везалий уже мог критически отнестись к методу преподавания анатомии.
    В предисловии к трактату «О строении человеческого тела» он писал: «Мои занятия никогда бы не привели к успеху, если бы во время своей медицинской работы в Париже я не приложил к этому делу собственных рук… И сам я, несколько изощренный собственным опытом, публично провел самостоятельно треть из вскрытий».
    Везалий задает на лекциях вопросы, которые свидетельствуют о его сомнениях в правоте учения Галена Гален — непререкаемый авторитет, его учение следует принимать без всяких оговорок, а Везалий доверяет больше своим глазам, чем трудам Галена.
    Ученый справедливо считал анатомию основой медицинских знаний, и целью его жизни стало стремление возродить опыт далекого прошлого, развить и усовершенствовать метод изучения анатомии человека. Однако церковь, препятствовавшая развитию естественных наук, запрещала вскрытие трупов человека, считая это кощунством. Много трудностей пришлось преодолеть молодому анатому.

    Для того чтобы иметь возможность заниматься анатомированием, он использовал любую возможность. Если заводились в кармане деньги, он договаривался с кладбищенским сторожем, и тогда в его руки попадал труп, годный для вскрытия. Если же денег не было, он, прячась от сторожа, вскрывал могилу сам, без его ведома. Что делать, приходилось рисковать!
    Везалий так хорошо изучил кости скелета человека и животных, что мог, не глядя на них, на ощупь назвать любую кость.
    Три года провел Везалий в университете, а потом обстоятельства сложились так, что он должен был покинуть Париж и снова отправиться в Лувен.
    Там Везалий попал в неприятную историю. Он снял с виселицы труп казненного преступника и произвел вскрытие. Лувенское духовенство потребовало строжайшего наказания за такое кощунство. Везалий понял, что споры тут бесполезны, и счел за благо покинуть Лувен и отправился в Италию.
    После получения в 1537 году докторской степени, Везалий стал преподавать анатомию и хирургию в Падуанском университете. Правительство Венецианской республики поощряло развитие науки о природе и стремилось расширить работу ученых в этом направлении.
    Блестящий талант молодого ученого был замечен. Двадцатидвухлетнего Везалия, уже получившего за свои труды звание доктора медицины, назначили на кафедру хирургии с обязанностью преподавать анатомию.

    Он с вдохновением читал лекции, которые всегда привлекали много слушателей, занимался со студентами и, главное, продолжал свои исследования. А чем глубже изучал он внутреннее строение организма, тем большое укреплялся в мысли, что в учении Галена немало весьма значительных ошибок, которых просто не замечали те, кто находился под влиянием галеновского авторитета.
    Четыре долгих года работал он над своим трудом. Он изучал, переводил и переиздавал труды ученых-медиков прошлого, своих предшественников-анатомов. И в их трудах он нашел немало ошибок. «Даже крупнейшие ученые, — писал Везалий, — рабски придерживались чужих оплошностей и какого-то странного стиля в своих непригодных руководствах». Ученый стал доверять самой подлинной книге — книге человеческого тела, в которой нет ошибок. Ночами, при свете свечей, Везалий анатомировал трупы. Он поставил целью решить великую задачу — правильно описать расположение, формы и функции органов человеческого тела.
    Результатом страстного и упорного труда ученого явился знаменитый трактат в семи книгах, появившийся в 1543 году и озаглавленный «О строении человеческого тела». Это был гигантский научный труд, в котором вместо отживших догм излагались новые научные взгляды. Он отразил культурный подъем человечества в эпоху Возрождения.
    Книгопечатание быстро развивалось в Венеции и в Базеле, где Везалий печатал свой труд. Его книгу украшают прекрасные рисунки художника Стефана Калькара, ученика Тициана. Характерно, что изображенные на рисунках скелеты стоят в позах, свойственных живым людям, и пейзажи, окружающие некоторые скелеты, говорят о жизни, а не о смерти. Весь этот труд Везалия был направлен на пользу живого человека, на изучение его организма, чтобы найти возможность сохранить его здоровье и жизнь. Каждая заглавная буква в трактате украшена рисунком, изображающим детей, изучающих анатомию. Так было в древности: искусство анатомирования преподавалось с детства, знания передавались от отца сыну. Великолепная художественная композиция фронтисписа книги изображает Везалия во время публичной лекции и вскрытия трупа человека.
    Везалий указал ряд ошибок Галена, касающихся строения руки, тазового пояса, грудной кости и др., но, прежде всего, строения сердца.
    Гален утверждал, что в сердечной перегородке взрослого имеется отверстие, сохраненное с утробного возраста, и что поэтому кровь проникает из правого желудочка непосредственно в левый. Установив непроницаемость сердечной перегородки, Везалий не мог не прийти к мысли, что должен иметься какой-то другой путь проникновения крови из правого сердца в левое. Описав клапаны сердца, Везалий создал основные предпосылки для открытия легочного кровообращения, но это открытие было сделано уже его преемниками.

    «Труд Везалия, — писал знаменитый русский ученый И. Павлов, — это первая анатомия человека в новейшей истории человечества, не повторяющая только указания и мнения древних авторитетов, а опирающаяся на работу свободного исследующего ума».
    Труд Везалия взволновал умы ученых. Смелость его научной мысли была настолько необычна, что наряду с оценившими его открытия последователями у него появилось много врагов. Немало горя испытал великий ученый, когда его покидали даже ученики. Знаменитый Сильвий, учитель Везалия, назвал Везалия «Везанус», что означает — безумный. Он выступил против него с резким памфлетом, который назвал «Защита против клеветы на анатомические работы Гиппократа и Галена со стороны некоего безумца».
    Большинство именитых медиков действительно стало на сторону Сильвия. Они присоединились к его требованию обуздать и наказать Везалия, посмевшего подвергнуть критике великого Галена. Такова была сила признанных авторитетов, таковы были устои общественной жизни того времени, когда всякое новшество вызывало настороженность, всякое смелое выступление, выходившее за рамки установленных канонов, расценивалось как вольнодумство. Это были плоды многовековой идеологической монополии церкви, насаждавшей косность и рутину.
    Вскрыв десятки трупов, тщательно изучив скелет человека, Везалий пришел к убеждению, что мнение, будто у мужчин на одно ребро меньше, чем у женщин, совершенно неверно. Но такое убеждение выходило за рамки медицинской науки. Оно затрагивало церковное вероучение.
    Не посчитался Везалий и с другим утверждением церковников. В его времена сохранялась вера в то, что в скелете человека есть косточка, которая не горит в огне, неуничтожима. В ней-то якобы и заложена таинственная сила, с помощью которой человек воскреснет в день страшного суда, чтобы предстать перед Господом Богом. И хотя косточку эту никто не видел, ее описывали в научных трудах, в ее существовании не сомневались. Везалий же, описавший строение человеческого тела, прямо заявил, что, исследуя скелет человека, он не обнаружил таинственной косточки.
    Везалий отдавал себе отчет, к каким последствиям могут привести его выступления против Галена. Он понимал, что выступает против сложившегося мнения, задевает интересы церкви: «Я поставил себе задачу показать строение человека на нем самом. Гален же производил вскрытия не людей, а животных, особенно обезьян. Это не его вина — он не имел другой возможности. Но виноваты те, кто теперь, имея перед глазами органы человека, упорствуют в воспроизведении ошибок. Разве уважение к памяти крупного деятеля должно выражаться в повторении его ошибок? Нельзя, подобно попугаям, повторять с кафедр содержание книг, не делая собственных наблюдений. Тогда слушателям лучше учиться у мясников».

    Везалий был новатором не только в изучении, но и в преподавании анатомии. Свои лекции он сопровождал демонстрациями трупа, а также скелета и натурщика Анатомические демонстрации он сопровождал разнообразными опытами на живых животных. В труде Везалия особое внимание обращает характер рисунков, нигде у него труп не изображен лежа, неподвижно, а всюду динамически, в движении, в рабочих позах. Эта своеобразная манера передачи тела представляла переход от описательной анатомии к физиологии. Рисунки в книге Везалия дают представление не только о строении, но отчасти и о функциях организма.

 

 

Ответ #2: 29 04 2010, 21:24:08 ( ссылка на этот ответ )

Воистину классическими признаны работы русского ученого Ивана Петровича Павлова по физиологии пищеварения. Это относится как к ценности фактических и теоретических результатов, так и оригинальности и мастерству выполнения. Благодаря гению Павлова удалось вывести физиологию органов пищеварительного тракта из тупика и поднять ее на небывалую высоту. «До Павлова физиология пищеварения была одним из отсталых разделов науки физиологии вообще, — замечает в своей книге о физиологе Э.А. Асратян. — Существовали лишь весьма смутные и фрагментарные представления о закономерностях работы отдельных пищеварительных желез и всего процесса пищеварения в целом. Вивисекционно острый эксперимент — основной прием исследования функций органов пищеварительной системы в те времена оказался непригоден для раскрытия тайн работы этих органов. Более того, полученные при таких порочных опытах фактические результаты стали причиной многих ошибок, например представления, что желудочные и поджелудочные железы не имеют секреторных нервов (Гейденгайн, Старлинг, Бейлис и др.). Если же отдельным ученым и удавалось установить наличие секреторных нервов для других пищеварительных желез, например для слюнных (Людвиг, Клод Бернар, Гейденгайн, Лэнгли и др.), то этот грубый прием физиологических исследований все же не позволял выявить всех тонкостей нервной регуляции их функций.
    Зная это, многие наши и зарубежные ученые (Клод Бернар, Гейденгайн, Басов Тири и др.) пытались заменить вивисекцию более совершенным приемом исследования — экспериментами на хронически оперированных животных. Однако эти попытки не увенчались должным успехом: либо выполненные операции оказывались малоценными по замыслу и по технике осуществления (фистула протоков слюнных желез у Клода Бернара, изолированный желудок у Гейденгайна), либо остроумно придуманные и успешно выполненные операции были недостаточными для выявления закономерностей работы данного органа хотя бы в главных чертах и годились лишь для получения отдельных, разрозненных фактов об их работе.
    Без преувеличения можно сказать, что основными и наиболее достоверными сведениями о физиологии пищеварительных желез наука обязана именно Павлову. Он фактически заново создал эту важную главу физиологии, создал монолитное и цельное учение о едином пищеварительном процессе взамен ранее существовавшей бесформенной смеси не связанных между собой половинчатых и ошибочных сведений о работе тех или иных органов пищеварительной системы».

    Ни один из русских ученых того времени, даже Менделеев, не получил такой известности за рубежом. «Это звезда, которая освещает мир, проливая свет на еще не изведанные пути», — говорил о нем Герберт Уэллс. Его называли «романтической, почти легендарной личностью», «гражданином мира».
    Иван Петрович Павлов (1849–1936) родился 26 сентября 1849 года в Рязани. Его отец, Петр Дмитриевич, был священником. С раннего детства Павлов перенял у отца упорство в достижении цели и постоянное стремление к самосовершенствованию. По желанию своих родителей Павлов посещал начальный курс духовной семинарии, а в 1860 году поступил в рязанское духовное училище.
    В обширной отцовской библиотеке как-то Иван нашел книжку Г.Г. Леви «Физиология обыденной жизни». Книга так глубоко запала ему в душу, что, будучи уже взрослым, «первый физиолог мира» при каждом удобном случае на память цитировал оттуда целые страницы. Увлекшись естественными науками, Павлов в 1870 году поступил в Петербургский университет на естественное отделение физико-математического факультета.
    Его интерес к физиологии возрос, после того как он прочитал книгу И. Сеченова «Рефлексы головного мозга», но освоить этот предмет ему удалось только после того, как он прошел обучение в лаборатории И. Циона, изучавшего роль депрессорных нервов.
    Первое научное исследование Павлова — изучение секреторной иннервации поджелудочной железы. За нее Павлов и М. Афанасьев были награждены золотой медалью университета.
    После получения в 1875 году звания кандидата естественных наук Павлов поступил на третий курс Медико-хирургической академии в Санкт-Петербурге (реорганизованной впоследствии в Военно-медицинскую). Затем Павлов становится ассистентом в Ветеринарном институте, где в течение двух лет продолжал изучение пищеварения и кровообращения.

    Летом 1877 года он работал в городе Бреслау, в Германии с Рудольфом Гейденгайном, специалистом в области пищеварения. В следующем году Павлов начал работать в физиологической лаборатории при его клинике в Бреслау, еще не имея медицинской степени, которую Павлов получил в 1879 году. В том же году Иван Петрович начал исследования по физиологии пищеварения, которые продолжались более двадцати лет. Многие исследования Павлова в восьмидесятых годах касались системы кровообращения, в частности регуляции функций сердца и кровяного давления.
    В 1883 году Павлов защитил диссертацию на соискание степени доктора медицины, посвященную описанию нервов, контролирующих функции сердца. Он был назначен приват-доцентом в академию, но вынужден был отказаться от этого назначения в связи с дополнительной работой в Лейпциге с Гейденгайном и Карлом Людвигом, двумя наиболее выдающимися физиологами того времени. Через два года Павлов вернулся в Россию.
    К 1890 году труды Павлова получили признание со стороны ученых всего мира. С 1891 года он заведовал физиологическим отделом Института экспериментальной медицины, организованного при его деятельном участии, одновременно оставаясь руководителем физиологических исследований в Военно-медицинской академии, в которой проработал с 1895 по 1925 год.
    В 1897 году свой экспериментальный материал и теоретические положения Павлов блестяще обобщил в классическом труде «Лекции о работе главных пищеварительных желез» (1897), который очень скоро был переведен за границей.
    В своих исследованиях Павлов использовал методы механистической и холистической школ биологии и философии, которые считались несовместимыми. Как представитель механицизма Павлов считал, что комплексная система, такая, как система кровообращения или пищеварения, может быть понята путем поочередного исследования каждой из их частей; как представитель «философии целостности» он чувствовал, что эти части следует изучать у интактного, живого и здорового животного. По этой причине он выступал против традиционных методов вивисекции, при которых живые лабораторные животные оперировались без наркоза для наблюдения за работой их отдельных органов.
    Считая, что умирающее на операционном столе и испытывающее боль животное не может реагировать адекватно здоровому, Павлов воздействовал на него хирургическим путем таким образом, чтобы наблюдать за деятельностью внутренних органов, не нарушая их функций и состояния животного. Мастерство Павлова в этой трудной хирургии было непревзойденным. Более того, он настойчиво требовал соблюдения того же уровня ухода, анестезии и чистоты, что и при операциях на людях.

    Используя данные методы, Павлов и его коллеги показали, что каждый отдел пищеварительной системы — слюнные и дуоденальные железы, желудок, поджелудочная железа и печень — добавляет к пище определенные вещества в их различной комбинации, расщепляющие ее на всасываемые единицы белков, жиров и углеводов. После выделения нескольких пищеварительных ферментов Павлов начал изучение их регуляции и взаимодействия.
    «Секреторные нервы слюнных желез были выявлены и довольно обстоятельно изучены предшественниками Павлова, — пишет Э.А. Асратян, — Клодом Бернаром, Гейденгайном, Людвигом, Ленгли и др., но условия острых вивисекционных экспериментов, в которых проводились их исследования, не позволяли им выявить во всей полноте картину и закономерности богатой и разносторонней естественной деятельности этих желез. Рефлекторная секреция слюны априорно ставилась в связь с общей возбудимостью рецепторов ротовой полости, хотя давно было известно, что эти рецепторы далеко не однородны по своей структуре и функциям.
    В своих систематических и тщательных хронических экспериментах Павлов установил, что рефлекторная секреция слюны в сильной степени варьирует по количеству и даже по качеству в зависимости от природы, силы, количества и продолжительности действия натуральных раздражителей в виде пищевых или отвергаемых веществ на рецепторы ротовой полости. Попадает в рот пища или отвергаемое вещество (кислота, щелочь и т. д.), какой сорт пищи попадает в рот — мясо, хлеб, молоко или что-либо другое, в каком виде (сухом или жидком), в каком количестве — от этого зависит, какие слюнные железы и в каком темпе будут работать, какого состава и какое количество слюны будут выделять и т. д. К примеру, было показано, что сухая пища вызывает большее слюноотделение, чем влажная или жидкая, кислота вызывает слюну с большим содержанием белка, чем пищевые продукты, речной песок, засыпанный в рот, также вызывает обильное слюноотделение, а мелкие камешки, положенные в рот, не вызывая слюны, выталкиваются изо рта и т. д.
    Вариабельность в количестве и качестве выделяемой слюны зависит также от ее функционального назначения — пищеварительного, защитного или санитарно-гигиенического. Например, на съедобные вещества выделяется, как правило, густая слюна, а на отвергаемые — жидкая. При этом соответственно меняется доля участия отдельных слюнных желез, производящих преимущественно жидкую или преимущественно густую слюну. Всей совокупностью этих и других фактов Павлов установил факт принципиальной важности: такая тонкая и яркая изменчивость рефлекторной деятельности слюнных желез обусловлена специфической возбудимостью разных рецепторов ротовой полости к каждому из этих раздражающих их агентов, и сами эти изменения носят приспособительный характер».
    В 1904 году Павлов был награжден Нобелевской премией по физиологии и медицине «за работу по физиологии пищеварения, благодаря которой было сформировано более ясное понимание жизненно важных аспектов этого вопроса». В речи на церемонии вручения премии К. А. Г. Мернер из Каролинского института дал высокую оценку вкладу Павлова в физиологию и химию органов пищеварительной системы. «Благодаря работе Павлова мы смогли продвинуться в изучении этой проблемы дальше, чем за все предыдущие годы, — сказал Мернер. — Теперь мы имеем исчерпывающее представление о влиянии одного отдела пищеварительной системы на другой, т. е. о том, как отдельные звенья пищеварительного механизма приспособлены к совместной работе».
    На протяжении всей своей научной работы Павлов сохранял интерес к влиянию нервной системы на деятельность внутренних органов. В начале двадцатого века его эксперименты, касающиеся пищеварительной системы, привели к изучению условных рефлексов. В одном из экспериментов, названным «мнимым кормлением», Павлов действовал просто и оригинально. Он проделал два «окошка»: одно — в стенке желудка, другое — в пищеводе Теперь пища, которой кормили прооперированную и вылеченную собаку, не доходила до желудка, вываливалась из отверстия в пищеводе наружу. Но желудок успевал получить сигнал, что пища в организм поступила, и начинал готовиться к работе: усиленно выделять необходимый для переваривания сок. Его можно было спокойно брать из второго отверстия и исследовать без помех.

    Собака могла часами глотать одну и ту же порцию пищи, которая дальше пищевода не попадала, а экспериментатор работал в это время с обильно льющимся желудочным соком. Можно было варьировать пищу и наблюдать, как соответственно меняется химический состав желудочного сока.
    Но главное было в другом. Впервые удалось экспериментально доказать, что работа желудка зависит от нервной системы и управляется ею. Ведь в опытах мнимого кормления пища не попадала непосредственно в желудок, а он начинал работать. Стало быть, команду он получал по нервам, идущим от рта и пищевода. В то же время стоило перерезать идущие к желудку нервы — и сок переставал выделяться.
    Другими способами доказать регулирующую роль нервной системы в пищеварении было просто невозможно. Ивану Петровичу это удалось сделать первым, оставив далеко позади своих зарубежных коллег и даже самого Р. Гейденгайна, чей авторитет был признан всеми в Европе и к которому Павлов совсем недавно ездил набираться опыта.
    «Любое явление во внешнем мире может быть превращено во временный сигнал объекта, стимулирующий слюнные железы, — писал Павлов, — если стимуляция этим объектом слизистой оболочки ротовой полости будет связана повторно… с воздействием определенного внешнего явления на другие чувствительные поверхности тела».
    Конечно, далеко не все факты и теоретические положения Павлова по физиологии пищеварительной системы сохраняют свою силу и сегодня. Многочисленные исследования ученых из различных стран внесли в некоторые из них поправки и изменения. Однако в целом современная физиология пищеварения все еще сохраняет глубокую печать мысли и труда Павлова. Его классические работы по-прежнему служат основой для новых и новых исследований.

 

 

Ответ #3: 29 04 2010, 23:27:49 ( ссылка на этот ответ )

Генетика как наука возникла в 1866 году, когда Грегор Мендель сформулировал положение, что «элементы», названные позднее генами, определяют наследование физических свойств. Спустя три года швейцарский биохимик Фридрих Мишер открыл нуклеиновую кислоту и показал, что она содержится в ядре клетки. На пороге нового века ученые обнаружили, что гены располагаются в хромосомах, структурных элементах ядра клетки. В первой половине XX века биохимики определили химическую природу нуклеиновых кислот, а в сороковых годах исследователи обнаружили, что гены образованы одной из этих кислот, ДНК. Было доказано, что гены, или ДНК, управляют биосинтезом (или образованием) клеточных белков, названных ферментами, и таким образом контролируют биохимические процессы в клетке.
    К 1944 году американский биолог Освальд Авери, работая в Рокфеллеровском институте медицинских исследований, представил доказательства, что гены состоят из ДНК. Эта гипотеза была подтверждена в 1952 году Альфредом Херши и Мартой Чейз. Хотя было ясно, что ДНК контролирует основные биохимические процессы, происходящие в клетке, ни структура, ни функция молекулы не были известны.
    Весной 1951 года, во время пребывания на симпозиуме в Неаполе, Уотсон встретил Мориса Г.Ф. Уилкинса, английского исследователя. Уилкинс и Розалин Франклин, его коллеги по Королевскому колледжу Кембриджского университета, провели рентгеноструктурный анализ молекул ДНК и показали, что они представляют собой двойную спираль, напоминающую винтовую лестницу. Полученные ими данные привели Уотсона к мысли исследовать химическую структуру нуклеиновых кислот. Национальное общество по изучению детского паралича выделило субсидию.
    В октябре 1951 года ученый отправился в Кавендишскую лабораторию Кембриджского университета для исследования пространственной структуры белков совместно с Джоном К. Кендрю. Там он познакомился с Фрэнсисом Криком, физиком, интересовавшимся биологией и писавшим в то время докторскую диссертацию.
    Впоследствии у них установились тесные творческие контакты. Начиная с 1952 года, основываясь на ранних исследованиях Чаргаффа, Уилкинса и Франклин, Крик и Уотсон решили попытаться определить химическую структуру ДНК.
    Фрэнсис Харри Комптон Крик родился 8 июня 1916 года в Нортхемптоне и был старшим из двух сыновей Харри Комптона Крика, зажиточного обувного фабриканта, и Анны Элизабет (Вилкинс) Крик. Проведя свое детство в Нортхемптоне, он посещал среднюю классическую школу. Во время экономического кризиса, наступившего после Первой мировой войны, коммерческие дела семьи пришли в упадок, и родители Фрэнсиса переехали в Лондон. Будучи студентом школы Милл-Хилл, Крик проявил большой интерес к физике, химии и математике. В 1934 году он поступил в Университетский колледж в Лондоне для изучения физики и окончил его через три года, получив звание бакалавра естественных наук. Завершая образование в Университетском колледже, молодой ученый рассматривал вопросы вязкости воды при высоких температурах; эта работа была прервана в 1939 году разразившейся Второй мировой войной.

    В военные годы Крик занимался созданием мин в научно-исследовательской лаборатории Военно-морского министерства Великобритании. В течение двух лет после окончания войны он продолжал работать в этом министерстве и именно тогда прочитал известную книгу Эрвина Шредингера «Что такое жизнь? Физические аспекты живой клетки», вышедшую в свет в 1944 году. В книге Шредингер задается вопросом. «Как можно пространственно-временные события, происходящие в живом организме, объяснить с позиции физики и химии?»
    Идеи, изложенные в книге, настолько повлияли на Крика, что он, намереваясь заняться физикой частиц, переключился на биологию. При поддержке Арчибалда В. Уилла Крик получил стипендию Совета по медицинским исследованиям и в 1947 году начал работать в Стрэнджвейской лаборатории в Кембридже. Здесь он изучал биологию, органическую химию и методы рентгеновской дифракции, используемые для определения пространственной структуры молекул. Его познания в биологии значительно расширились после перехода в 1949 году в Кавен-дишскую лабораторию в Кембридже — один из мировых центров молекулярной биологии.
    Под руководством Макса Перуца Крик исследовал молекулярную структуру белков, в связи с чем у него возник интерес к генетическому коду последовательности аминокислот в белковых молекулах. Около 20 важнейших аминокислот служат мономерными звеньями, из которых построены все белки. Изучая вопрос, определенный им как «граница между живым и неживым», Крик пытался найти химическую основу генетики, которая, как он предполагал, могла быть заложена в дезоксирибо-нуклеиновой кислоте (ДНК).
    В 1951 году двадцатитрехлетний американский биолог Джеймс Д. Уотсон пригласил Крика на работу в Кавендишскую лабораторию.
    Джеймс Девей Уотсон родился 6 апреля 1928 года в Чикаго (штат Иллинойс) в семье Джеймса Д. Уотсона, бизнесмена, и Джин (Митчелл) Уотсон и был их единственным ребенком. В Чикаго он получил начальное и среднее образование. Вскоре стало очевидно, что Джеймс необыкновенно одаренный ребенок, и его пригласили на радио для участия в программе «Викторины для детей» Лишь два года проучившись в средней школе, Уотсон получил в 1943 году стипендию для обучения в экспериментальном четырехгодичном колледже при Чикагском университете, где проявил интерес к изучению орнитологии. Став бакалавром естественных наук в университете Чикаго в 1947 году, он продолжил образование в Индианском университете Блумингтона.
    К этому времени Уотсон заинтересовался генетикой и начал обучение в Индиане под руководством специалиста в этой области Германа Дж. Меллера и бактериолога Сальвадора Лурия. Уотсон написал диссертацию о влиянии рентгеновских лучей на размножение бактериофагов (вирусов, инфицирующих бактерии) и получил в 1950 году степень доктора философии. Субсидия Национального исследовательского общества позволила ему продолжить исследования бактериофагов в Копенгагенском университете в Дании Там он проводил изучение биохимических свойств ДНК бактериофага Однако, как он позднее вспоминал, эксперименты с бактериофагом стали его тяготить, ему хотелось узнать больше об истинной структуре молекул ДНК, о которых так увлеченно говорили генетики.

    Крику и Уотсону было известно, что существует два типа нуклеиновых кислот — ДНК и рибонуклеиновая кислота (РНК), каждая из которых состоит из моносахарида группы пентоз, фосфата и четырех азотистых оснований: аденина, тимина (в РНК — урацила), гуанина и цитозина. В течение последующих восьми месяцев Уотсон и Крик обобщили полученные результаты с уже имевшимися, сделав сообщение о структуре ДНК в феврале 1953 года Месяцем позже они создали трехмерную модель молекулы ДНК, сделанную из шариков, кусочков картона и проволоки.
    Согласно модели Крика—Уотсона, ДНК представляет двойную спираль, состоящую из двух цепей дезоксирибозофосфата, соединенных парами оснований аналогично ступенькам лестницы. Посредством водородных связей аденин соединяется с тимином, а гуанин — с цитозином. С помощью этой модели можно было проследить репликацию самой молекулы ДНК.
    Модель позволила другим исследователям отчетливо представить репликацию ДНК. Две цепи молекулы разделяются в местах водородных связей наподобие открытия застежки-молнии, после чего на каждой половине прежней молекулы ДНК происходит синтез новой. Последовательность оснований действует как матрица, или образец, для новой молекулы.
    В 1953 году Крик и Уотсон завершили создание модели ДНК. Это позволило им вместе с Уилкинсом через девять лет разделить Нобелевскую премию 1962 года по физиологии и медицине «за открытия, касающиеся молекулярной структуры нуклеиновых кислот и их значения для передачи информации в живых системах».
    А.В. Энгстрем из Каролинского института сказал на церемонии вручения премии: «Открытие пространственной молекулярной структуры… ДНК является крайне важным, т. к. намечает возможности для понимания в мельчайших деталях общих и индивидуальных особенностей всего живого». Энгстрем отметил, что «расшифровка двойной спиральной структуры дезоксирибонуклеиновой кислоты со специфическим парным соединением азотистых оснований открывает фантастические возможности для разгадывания деталей контроля и передачи генетической информации».
    После опубликования описания модели в английском журнале «Нейче» в апреле 1953 года тандем Крика и Уотсона распался.

    В 1965 году Уотсон написал книгу «Молекулярная биология гена», ставшую одним из наиболее известных и популярных учебников по молекулярной биологии.
    Что касается Крика, то в 1953 году он получил степень доктора философии в Кембридже, защитив диссертацию, посвященную рентгеновскому дифракционному анализу структуры белка. В течение следующего года он изучал структуру белка в Бруклинском политехническом институте в Нью-Йорке и читал лекции в разных университетах США. Возвратившись в Кембридж в 1954 году, он продолжил свои исследования в Кавендишской лаборатории, сконцентрировав внимание на расшифровке генетического кода. Будучи изначально теоретиком, Крик начал совместно с Сиднеем Бреннером изучение генетических мутаций в бактериофагах (вирусах, инфицирующих бактериальные клетки).
    К 1961 году были открыты три типа РНК: информационная, рибосомальная и транспортная. Крик и его коллеги предложили способ считывания генетического кода. Согласно теории Крика, информационная РНК получает генетическую информацию с ДНК в ядре клетки и переносит ее к рибосомам (местам синтеза белков) в цитоплазме клетки. Транспортная РНК переносит в рибосомы аминокислоты. Информационная и рибосомная РНК, взаимодействуя друг с другом, обеспечивают соединение аминокислот для образования молекул белка в правильной последовательности. Генетический код составляют триплеты азотистых оснований ДНК и РНК для каждой из 20 аминокислот. Гены состоят из многочисленных основных триплетов, которые Крик назвал кодонами.
    До расшифровки генома человека оставалось сорок лет…

 

 

Ответ #4: 30 04 2010, 00:27:42 ( ссылка на этот ответ )

Удивительно, но кислород был открыт несколько раз. Первые сведения о нем встречаются уже в VIII веке в трактате китайского алхимика Мао Хоа. Китайцы представляли себе, что этот газ («йын») — составная часть воздуха, и называли его «деятельным началом»! Жителям самой большой азиатской страны было известно и то, что кислород соединяется с древесным углем, горящей серой, некоторыми металлами. Китайцы могли и получать кислород, используя соединения типа селитры.
    Все эти древние сведения постепенно забылись. Лишь в XV веке о кислороде мимоходом упоминает великий Леонардо да Винчи.
    Вновь его открывает в XVII веке голландец Дреббель. О нем известно очень мало. Вероятно, то был великий изобретатель и крупный ученый. Он сумел создать подводную лодку. Однако объем лодки ограничен, поэтому брать с собой воздух, состоящий в основном из азота, было невыгодно. Логичнее использовать кислород. И Дреббель получает его из селитры! Это произошло в 1620 году, более чем за сто пятьдесят лет до «официального» открытия кислорода Пристли и Шееле.

    Джозеф Пристли (1733–1804) родился в Филдхеде (Йоркшир) в семье бедного суконщика. Пристли изучал теологию и даже читал проповеди в независимой от англиканской церкви протестантской общине. Это позволило ему в дальнейшем получить высшее теологическое образование в Академии в Девентри. Там Пристли кроме теологии занимался философией, естествознанием, изучил девять языков.
    Поэтому, когда в 1761 году Пристли был обвинен в свободомыслии и ему запретили читать проповеди, он стал преподавателем языков в Уоррингтонском университете. Там Пристли впервые прослушал курс химии. Эта наука произвела на Пристли такое большое впечатление, что он, в тридцатилетнем возрасте будучи человеком с определенным положением, решил приступить к изучению естествознания и проведению химических экспериментов. По предложению Бенджамена Франклина, Пристли в 1767 году написал монографию «История учения об электричестве». За этот труд он был избран почетным доктором Эдинбургского университета, а позже членом Лондонского Королевского общества (1767) и иностранным почетным членом Петербургской Академии наук (1780).
    С 1774 по 1799 год Пристли открыл или впервые получил в чистом виде семь газообразных соединений: закись азота, хлористый водород, аммиак, фтористый кремний, диоксид серы, оксид углерода и кислород.
    Пристли удалось выделить и исследовать эти газы в чистом состоянии, поскольку он существенно улучшил прежнее лабораторное оборудование для собирания газов. Вместо воды в пневматической ванне, предложенной ранее английским ученым Стивеном Гейлсом (1727), Пристли стал использовать ртуть. Пристли независимо от Шееле открыл кислород, наблюдая выделение газа при нагревании без доступа воздуха твердого вещества, находящегося под стеклянным колпаком, с помощью сильной двояковыпуклой линзы.
    В 1774 году Пристли провел опыты с оксидом ртути и суриком. Маленькую пробирку с небольшим количеством красного порошка он опустил открытым концом в ртуть и нагревал вещество сверху при помощи двояковыпуклой линзы.
    Свои опыты по получению кислорода при нагревании оксида ртути Пристли впоследствии изложил в шеститомном труде «Опыты и наблюдения над различными видами воздуха». В этой работе Пристли писал: «Достав линзу с диаметром 2 дюйма, с фокусным расстоянием 20 дюймов, я начал исследовать с ее помощью, какой род воздуха выделяется из разнообразнейших веществ, естественных и искусственно приготовленных.

    После того как с помощью этого прибора я проделал ряд опытов, я попытался 1 августа 1774 года выделить воздух из кальцинированной ртути и увидел тотчас, что воздух может очень быстро выделиться из нее. Меня несказанно удивило то, что свеча в этом воздухе горит необычайно ярко, и я совершенно не знал, как объяснить это явление. Тлеющая лучинка, внесенная в этот воздух, испускала яркие искры. Я обнаружил такое же выделение воздуха при нагревании свинцовой извести и сурика.
    Тщетно пытался я найти объяснение этому явлению… Но ничто, что я делал до сих пор, меня так не удивило и не дало такого удовлетворения».
    «Почему это открытие вызвало у Дж. Пристли такое удивление? — спрашивает Ю.И. Соловьев. — Убежденный сторонник учения о флогистоне, он рассматривал оксид ртути как простое вещество, образованное при нагревании ртути в воздухе и, следовательно, лишенное флогистона. Поэтому выделение „дефлогистированного воздуха“ из оксида ртути при нагревании казалось ему просто невозможным. Вот почему он был „так далек от понимания того, что в действительности получил“… В 1775 году он описал те свойства, которые отличают „новый воздух“ от „другого газа“ — оксида азота».
    Открыв новый газ в августе 1774 года, Дж. Пристли, вместе с тем, Не имел ясного представления о его истинной природе: «Я откровенно признаюсь, что в начале опытов, о которых говорится в этой части, я был так далек от того, чтобы образовать какую-нибудь гипотезу, которая привела бы к открытиям, которые я сделал, что они показались бы мне невероятными, если бы мне о них сказали».
    Исследования Пристли по химии газов, и особенно открытие им кислорода, подготовили поражение теории флогистона и наметили новые пути развития химии.
    Через два месяца после получения кислорода Пристли, приехав в Париж, сообщил о своем открытии Лавуазье. Последний тотчас понял громадное значение открытия Пристли и использовал его при создании наиболее общей кислородной теории горения и опровержении теории флогистона.

    Одновременно с Пристли работал Шееле. Он писал о своих приоритетах: «Исследования воздуха являются в настоящее время важнейшим предметом химии. Этот упругий флюид обладает многими особыми свойствами, изучение которых способствует новым открытиям. Удивительный огонь, этот продукт химии, показывает нам, что без воздуха он не может производиться…»
    Карл Вильгельм Шееле (1742–1786) родился в семье пивовара и торговца зерном в шведском городе Штральзунде. Карл учился в Штральзунде в частной школе, но уже в 1757 году переехал в Гетеборг.
    Родители Шееле не имели средств, чтобы дать высшее образование Карлу, который был уже седьмым сыном в этой большой семье. Поэтому он вынужден был стать сначала учеником аптекаря, затем уже проложить себе путь в науку многолетним самообразованием. Работая в аптеке, он достиг большого искусства в химическом эксперименте.
    В одной из аптек Гетеборга Шееле освоил основы фармации и лабораторной практики. Кроме того, он усердно изучал труды химиков И. Кункеля, Н. Лемери, Г. Шталя, К. Неймана.
    Проработав восемь лет в Гетеборге, Шееле переехал в Мальме, где очень скоро проявил замечательные экспериментальные способности. Там он смог по вечерам заниматься собственными исследованиями в лаборатории аптекаря, где днем готовил лекарства.
    В конце апреля 1768 году Шееле переехал в Стокгольм, надеясь в столице установить близкие контакты с учеными и получить новый стимул для проведения работ. Однако в стокгольмской аптеке «Корпен» Шееле не пришлось проводить химические опыты; он занимался только приготовлением лекарств. И лишь иногда, устроившись где-нибудь на тесном подоконнике, ему удавалось проводить собственные опыты. Но даже в таких условиях Шееле сделал ряд открытий. Так, например, изучая действие солнечного света на хлорид серебра, Шееле нашел, что потемнение последнего начинается в фиолетовой части спектра и выражено там наиболее сильно.

    Два года спустя Шееле переехал в Упсалу, где в университете работали такие знаменитые ученые, как ботаник Карл Линней и химик Торберн Бергман. Шееле и Бергман вскоре стали друзьями, что немало способствовало успехам в научной деятельности обоих химиков.
    Шееле был одним из тех ученых, которым сопутствовала удача в их работе. Его экспериментальные исследования существенно способствовали превращению химии в науку. Он открыл кислород, хлор, марганец, барий, молибден, вольфрам, органические кислоты (винную, лимонную, щавелевую, молочную), серный ангидрид, сероводород, кислоты — плавиковую и кремнефторводо-родную, многие другие соединения. Он впервые получил газообразные аммиак и хлористый водород. Шееле также показал, что железо, медь и ртуть имеют различные степени окисления. Он выделил из жиров вещество, впоследствии названное глицерином (пропантриолом). Шееле принадлежит заслуга получения цианистоводородной (синильной) кислоты из берлинской лазури.
    Наиболее значительный труд Шееле «Химический трактат о воздухе и огне» содержит его экспериментальные работы, выполненные в 1768–1773 годах.
    Из этой трактата видно, что Шееле несколько раньше Пристли получил и описал свойства «огненного воздуха» (кислорода). Ученый получал кислород различными путями: нагреванием селитры, нитрата магния, перегонкой смеси селитры с серной кислотой.
    «Огненный воздух», — писал Шееле, — есть тот самый, посредством которого поддерживается циркуляция крови и соков у животных и растений… Я склонен думать, что «огненный воздух» состоит из кислой тонкой материи, соединенной с флогистоном, и, вероятно, что все кислоты получили свое начало от «огненного воздуха».
    Шееле объяснял полученные им результаты предположением, что теплота — соединение «огненного воздуха» (кислорода) и флогистона. Следовательно, он так же, как и М.В. Ломоносов, и Г. Кавендиш, отождествлял флогистон с водородом и думал, что при сжигании водорода в воздухе (при соединении водорода и «огненного воздуха») образуется теплота.

    В 1775 году Бергман опубликовал статью об открытии Шееле «огненного воздуха» и о его теории. «Мы уже раньше отмечали, — писал Бергман, — большую силу, с которой „чистый (огненный) воздух“ удаляет флогистон из железа и меди. Азотная кислота имеет также большое сродство к этому элементу… Эти явления приписываются переселению флогистона из кислоты в воздух и легко объясняются тем, что так хорошо было доказано опытами г-на Шееле, что теплота — не что иное, как флогистон, тесно соединенный с чистым воздухом, в комбинации которых порождается полученное тело (и происходит) уменьшение прежде занимаемого объема».
    Хотя обычно и говорят, что Шееле опоздал с публикацией своей статьи относительно Пристли примерно на два года, однако Бергман сообщил об открытии Шееле кислорода, по крайней мере, на три месяца раньше открытия Пристли.
    Вот выдержка из предисловия Бергмана к книге Шееле:
    «Химия учит, что упругая среда, которая окружает Землю, во все времена и во всех местах имеет единый состав, включающий три различных вещества, а именно хороший воздух (кислород — Прим авт.), испорченный „мефитический воздух“ (азот — Прим. авт.) и эфирную кислоту (углекислый газ — Прим. авт.). Первый Пристли назвал, не то что не правильно, но с натяжкой, „дефлогистированным воздухом“, Шееле — „огненным воздухом“, поскольку он один поддерживает огонь, в то время как два других гасят его… Я повторил, с различными изменениями, основные опыты, на которых он (Шееле) основывал свои заключения, и нашел их совершенно правильными. Тепло, огонь и свет имеют в основном одни и те же составные элементы: хороший воздух и флогистон… Из видов известных теперь веществ хороший воздух является наиболее эффективным для удаления флогистона, который, как видно, представляет собой настоящее элементарное вещество, входящее в состав многих материй. Поэтому я и поместил хороший воздух наверху, над флогистоном, в моей новой таблице сродства… В заключение я должен сказать, что этот замечательный труд бьш закончен два года тому назад, несмотря на то, что по различным причинам, о которых излишне упоминать здесь, опубликован только теперь. Следовательно, случилось так, что Пристли, не зная труда Шееле, ранее описал различные новые свойства, относящиеся к воздуху. Однако мы видим, что они отличного рода и представлены в иной связи».

 

 

Страниц: 1 2 3 ... 18 | ВверхПечать